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초 록

구성비 데이터의 분석은 최근 인간 마이크로바이옴 연구에서의 중요성 때문에 특히 주목받고 있다. 이러한

데이터 세트는 고차원적이고 상당수의 0으로 구성되어 있기 때문에 기존의 방법론으로는 어려움을 겪는

경우가 많다. 이를 극복하기 위해 0을 자연스럽게 처리하는 커널 방법을 사용하여 이 문제에 접근하고

고차원성을 완화하기 위한 차원 축소 방법들을 개발하였다. 이 논문에서는 구성비 데이터에 커널 방법을

활용하는 세 가지 프로젝트를 소개한다.

프로젝트 1에서는 0 값들을 치환한 후 로그-비율 변환을 수행하는 만연한 접근 방식이 데이터의 기하

형상에 심각한 왜곡을 초래한다는 것을 보여준다. 대안으로, 기하학적 고려 사항에 기반한 커널 방법을

사용하여 제로 치환이 필요 없는 방법을 제안한다. 프로젝트 2에서는 구성비 데이터의 변수 선택 방법론을

커널에기반하여제시하고,부분컴포지션보다병합을사용해야한다고주장한다. 프로젝트 3에서는두번째

프로젝트의 방법론을 확장하여 병합에 대한 보다 완화된 접근 방식을 통해 구성비 데이터의 새로운 차원

축소 방법을 개발한다.

핵 심 낱 말 구성비 데이터, 변수 선택, 병합, 커널 방법, 충분 차원 축소

Abstract

Compositional data analysis has been garnering more focus, particularly due to its significance in hu-

man microbiome studies. Traditional techniques often struggle with recent data sets as they are high-

dimensional and constituted of a significant proportion of zeros. We approach this problem using kernel

methods, which naturally handle zeros in data, and develop dimension reduction methods to alleviate the

curse of dimensionality and enhance interpretability in subsequent analyses. In this thesis, we introduce

three projects utilizing kernel methods for compositional data.

In Project 1, we demonstrate that the prevalent approach of log-ratio transformation, performed

after zero-replacement, produces significant distortions in the marginal distribution of data. Instead,

we suggest employing kernel methods based on geometric considerations, eliminating the need for zero

replacements. In Project 2, we propose a kernel-based variable selection method of compositional data,

arguing the use of amalgamation over subcomposition. In Project 3, we extend the methodology from

the second project to develop a novel method for reducing the dimension of compositional data through

a more relaxed version of amalgamation.

Keywords Compositional data, variable selection, amalgamation, kernel methods, sufficient dimension

reduction
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Chapter 1. Introduction

Compositional data are multivariate data with nonnegative values in which only the relative proportions

of the components are meaningful. They are frequently normalized to sum to unity to analyze the data

consistently. Thus, the domain of compositional data with d+ 1 variables is the d-dimensional simplex

∆d ⊂ Rd+1:

∆d =

{
(x0, x1, . . . , xd)

∣∣∣∣ d∑
i=0

xi = 1, xi ≥ 0, ∀i

}
.

Compositional data appear in many scientific applications, for instance, geochemical compositions [115],

word compositions in texts [69], and composition of immune cells [129]. Among various examples, this

research is primarily motivated by microbiome data, which indicates the relative abundance of microbes

that live in or on the human body.

The human microbiome studies have gained much attention since it is linked to various diseases and

health-related attributes in humans [40, 49, 125]. Modern high-throughput sequencing technologies, such

as 16S ribosomal RNA (rRNA) gene sequencing, have enabled generating the raw number of microbiomes

from collected samples. Due to the varying amounts of DNA count across different samples, this data

must be regarded as compositional [59]. In addition, microbiome data notably exhibits that the number

of microbial taxa is often much higher than the available sample size, i.e., high dimensionality and

that a significant portion of data are zeros [68]. Therefore, most microbiome data obtained in practice

are located mainly on the boundary of a high-dimensional simplex. All these aspects - compositional

structure, high dimensionality, excess zeros - pose significant challenges as they must be addressed

simultaneously.

The compositional structure, imposing the constant sum constraint, results in spurious negative

correlations in the data [19, 84]. That is, each component of a composition is inevitably affected by a

change of other components, and this phenomenon would yield uninterpretable results if classical multi-

variate methods were applied blindly to the data. An overwhelmingly dominant approach to overcome

this problem is to take log-ratio transformations to compositional data, which is proposed by Aitchison

[3]. The log-ratio transformations naturally address the relative nature of compositional data by deal-

ing with ratios directly, and the logarithm is applied to spread out the ratio values to the Euclidean

space. Thus, after applying these transformations, one can apply traditional statistical methods in the

Euclidean space. Furthermore, his argument establishes a homeomorphism between the interior of the

simplex,

∆d
>0 =

{
(x0, x1, . . . , xd)

∣∣∣∣ d∑
i=0

xi = 1, xi > 0, ∀i

}
,

called a positive simplex, and the whole Euclidean space Rd. This one-to-one correspondence naturally

pulls back the linear vector space structure to the positive simplex, called the Aitchison geometry [6],

which has compelled researchers for a long time.

However, the log-ratio approaches for compositional data are not directly applicable for data with

zero values since both logarithm and ratio computations are not able to deal with zeros. As microbiome

data, which is of the most recent interest, have a significant number of zeros, this is a crucial weakness to

the log-ratio approaches. In order to overcome this drawback, it has been a common practice to replace

zeros with small positive values. There are some widely accepted heuristics for zero replacements; see
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[42] for example, but one can also create countless ways to do this. It is important to note that there is

no consensus for zero replacement, and many studies have shown that the data analysis results are often

sensitive to the choice of zero replacement strategy, when paired with log-ratio transformations [67, 89].

We will address this issue in Chapter 2 that this sensitivity is an unavoidable, essential geometric problem.

In this thesis, we propose to employ various kernel methods to avoid such zero problems in the

dominant approach. Applying kernel methods directly on the compositional domain does not require

zero replacements, so it does not damage data. In Chapter 2, we prove that kernel methods based on

the embedding to reproducing kernel Hilbert space (RKHS) consistently apply with the compositional

nature, scale invariance [3]. Within the kernel framework, we also address the high dimensionality

of recent data. We develop an effective variable selection method and a general dimension reduction

method in Chapter 4 and Chapter 5, both of which are based on the conditional covariance operator

of RKHSs. These works are generalizations of the kernel dimension reduction works for Euclidean data

[20, 34]; we extend their original method for orthogonal projections to arbitrary nonlinear projections,

without sacrificing theoretical guarantees. We now describe brief summaries of those three projects in

the following sections.

1.1 Kernel Methods for Compositional Data with Many Zeros

Addressing the zero problem in the log-ratio approaches has been a longstanding problem of compo-

sitional data literature. There are many heuristics and imputation methods for replacing zeros deemed

reasonable [71, 72], but the inconsistency of data analytic results depending on the choice of replacement

methods have continuously been reported [67, 78, 89]. Therefore, one must examine the effects of the

replaced zeros when using the log-ratio approach, which further complicates the data analysis process

and interpretation of the results.

In Chapter 2, we first show that the dominant approach, zero replacement followed by log-ratio trans-

formations, is geometrically improper, leading to anomalous distortions in the marginal distribution of

data. Based on a simple geometric intuition, we demonstrate that, in terms of Aitchison geometry, zero

replacement is not a small data alteration and the sensitivity to the choice of zero replacement is essen-

tially unavoidable. Therefore, the inconsistency of the zero replacements is a fundamental, unavoidable

problem when paired with log-ratio transformations.

To circumvent this problem, a new approach that departs from the log-ratio framework is needed.

As an alternative, we propose to apply kernel methods on the compositional domain directly while

addressing the geometric structure of compositional data. The relative structure of compositional data

displays a unique geometric structure; they are in fact represented by nonnegative radial lines, and

every statistical method has to be applied consistently along with the points on the radial lines. This is

also known as the scale invariance principle [3], and we prove that RKHS embeddings enjoy this scale

invariance property. Having known this fact, it is clear that kernel methods obviously overcome the zero

problem of log-ratio approaches; it does not require zero replacements, so it does not damage data.

Furthermore, we suggest that the spherical representation of compositional data may provide a

better domain for applying kernel methods. Such representation is obtained via radial transformation,

a perspective which has long been neglected in the literature after debate of Watson and Aitchison in

1989-1992 [96]. Since dot-product kernels on the hypersphere have long deeply studied in the literature

[99, 91, 39], we can take advantages of their known properties, such as known decay rates for the

eigenvalues of kernels. Experiments with kernel principal component analysis reveal that the conventional
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methodology, log-ratio transformation after zero replacement, disperses the data with zeros erratically,

whereas our proposed method based on radial transformation remains stable. Chapter 2 is a joint

work with Changwon Yoon, Cheolwoo Park, and Jeongyoun Ahn, and is published in the International

Conference of Machine Learning in 2022 [80].

1.2 Variable Selection Method for Compositional Data

In many recently available compositional data such as microbiome data, the number of variables often

far exceeds the number of available samples. We are often interested in particular taxa that determine the

state of human disease or health, so variable selection is one of the most relevant task in high-dimensional

compositional data analysis. However, existing methods often rely on log-ratio transformations [63, 90],

which may distort data and lead to unreliable selections as will be pointed out in Chapter 2. To avoid this

issue, we propose an effective kernel-based variable selection method for compositional data in Chapter 4.

This work extends the kernel dimension reduction (KDR) work for Euclidean data [20, 34] that leverages

the conditional covariance operator. Unlike traditional kernel methods, it maintains interpretability by

measuring conditional independence after data projections, thereby offering a criterion for achieving

sufficient dimension reduction (SDR) [60]. This work and the next project shares the same theoretical

background, whose detail is demonstrated in Chapter 3 separately.

In addressing variable selection for compositional data, our work highlights a crucial but overlooked

issue in the traditional approaches. In most cases, renormalization is conducted after choosing a subset

of variables since the selected variables retain only relative information. This process, renormalization

after selection, is called a subcomposition, which has been regarded as a fundamental operation of

compositional data [6]. However, we uncover that building predictive models based on even accurate

subcompositions could severely deteriorate performance, as renormalization unnecessarily eliminates the

relative information of variables to the total. To rectify this, we propose a straightforward but powerful

strategy, amalgamating [3] all unselected variables into an additional coordinate. By adding this dummy

coordinate, the relative information of selected variables to the total is preserved and the selection result

directly locates in a lower dimensional simplex.

Combining our amalgamation-based framework and the generalized theory of conditional covariance

operator, we build an effective variable selection algorithm that aims for SDR of compositional data.

The idea of the proposed method is essentially minimization of the conditional covariance operator

as developed in Chapter 3, but we slightly change the theoretical environment to efficiently perform

the variable selection in this chapter. We develop the theory in discrete settings, and then overcome

the computational infeasibility of the proposed discrete optimization in high dimensions by continuously

relaxing our algorithm and performing projected gradient descent. As a result of relaxation, we eventually

obtain importance weights of variables, which are rounded to result in a discrete variable selection.

Experiments in a variety of situations exhibits the superior performance of our method than log-ratio-

based methods. The content of Chapter 4 is a joint work with Jeongyoun Ahn and Cheolwoo Park, and

is published in International Conference of Machine Learning in 2023 [81].
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1.3 Interpretable Dimensionality Reduction for Compositional

Data

Although we develop a kernel approach to compositional data analysis in Chapter 2 that does not

distort zero values in data, direct applications of such kernel methods to high-dimensional compositional

data suffer from the curse of dimensionality. This problem exacerbates further for data with higher

variances; for instance, see Song and Chen [106] for decreasing power of kernel two sample tests as

the variability of data increases. As our primary motivating data, microbiome data exhibits extreme

dispersion [68], we need to find a solution that alleviates the curse of dimensionality.

Despite the need for dimension reduction methods of compositional data, rigorous exploration in

this area has been limited due to their intricate relative structures. Furthermore, most existing methods

grapple with weaknesses in the interpretability of reduction results or accuracy issues stemming from zero

values. For example, simple linear projections of the original count data break the compositional structure

[117] in general, and linear projections of log-ratio-transformed variables are not clearly interpreted as

compositional data again. This highlights a need for new dimension reduction methods that fulfill two

requirements: interpretability and ability to deal with zeros adequately.

In Chapter 5, we introduce a novel dimension reduction framework for compositional data that

results in lower dimensional compositions, building on the concept of amalgamation. Our new framework

is more flexible than rigid amalgamation while maintaining the crucial interpretation of aggregating

similar compositional variables. We approach this dimension reduction by seeking an optimal SDR

projection as in the previous variable selection work. Here, the combination of our new framework and

the SDR relation represents an intuitive objective: aggregation of the original variables based on their

functional similarity.

To achieve a desirable dimension reduction within our framework, we extensively generalize the

KDR method of Fukumizu et al. [34]. Although we apply this extended theory only to compositional

data, our generalized theory shows a clear potential to be applied to other data with a specified class of

dimension reduction functions. To emphasize its potential, we elaborate all the theoretical details with

a fully general language in a separate Chapter 3.

Applying the theoretical result developed in Chapter 3 with some algorithmic developments tailored

to compositional data, we find via experiments that our proposed algorithm works extremely well in

general. By setting the target dimension of the algorithm to three variables, our method exhibits an

unprecedented graphical exploration tool for compositional data through ternary plots. We can fully

understand the projected variables in terms of the original variables, and the visualizations of projected

data naturally exhibit relative behavior, or interactions, of projected variables. The content of Chapters

3 and 5 are joint works with Jeongyoun Ahn and Cheolwoo Park.

1.4 Organization

This thesis is organized as follows. In Chapter 2, we demonstrate the details of our proposal to

employing kernel methods to compositional data. Chapter 3 devotes to generalize the kernel dimension

reduction theory to arbitrary structured projections, being a theoretical basis for the subsequent chapters.

We point out a crucial problem of subcomposition in Chapter 4, and we propose an amalgamation-based

variable selection framework, approached by a slightly modified version of the method developed in

Chapter 3. In Chapter 5, we propose a new composition-to-composition dimension reduction frame-
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work, which produces an unprecedented compelling graphical exploration tool in the compositional data

literature. Finally, we provide several further research directions in Chapter 6.

Each of the following chapters in this dissertation is a version of the author’s publications or works

in progress. Because they are independently studied with different objectives, each chapter may have its

own introduction and conclusion, and the notations and definitions may differ across the chapters.
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Chapter 2. Kernel Methods for Radial Transformed

Compositional Data with Many Zeros

2.1 Introduction

Compositional data are multivariate nonnegative data carrying only relative information of compo-

nents. They are often normalized to have a constant total sum, typically one, so that the data with d+1

variables reside in a compact subset of the Euclidean space:

∆d =

{
(x1, · · · , xd+1) ∈ Rd+1

∣∣∣∣ d+1∑
i=1

xi = 1, xi ≥ 0, ∀i

}
,

called a simplex. Here, the superscript d denotes the topological dimension of the simplex.

Data comprised of compositions are ubiquitous in many scientific fields: geochemical composition

of rocks or soils in earth science; proportions of various micro-organisms at different sea depths in

marine science; portfolio allocation in finance, just to name a few. Among them, our primary motivating

examples are microbiome data consisting of relative abundance of microbes, whose analyses have recently

been spotlighted in medical research [37], thanks to the emerging scientific and public interests in human

gut microbiomes that are associated with many diseases and health-related attributes of humans and

animals. Notable characteristics of microbiome data are that the number of bacterial taxa is typically

much higher than the available sample size, i.e., high dimension, low sample size, and that a significant

portion, about 50 – 80%, of data are zeros [42]. Those zeros make microbiome data locate mainly on the

boundary of a high-dimensional simplex.

The compositional aspect of the data poses challenges to statistical data analysis. Due to the

constant sum constraint, each component of a composition is inevitably affected by other components.

To be specific, they have spurious negative correlations [84, 19]. This would yield uninterpretable results

if classical multivariate methods are applied blindly to the data. An overwhelmingly dominant approach

to overcome this problem is to take log-ratio transformations to compositional data, which is proposed by

Aitchison [3]. There are three types of such transformations, additive, centered, and isometric log-ratio

transformations, all of which send compositional data to the Euclidean space. After applying one of

these transformations, one may use traditional multivariate statistical methods in the Euclidean space.

However, the log-ratio methods are not readily applicable for data with many zeros because logarithm

and ratio computations in the transforms do not allow zero values. Indeed, the log-ratio transformations

are forced to deal only with data on the open simplex :

Sd =

{
(x1, · · · , xd+1) ∈ Rd+1

∣∣∣∣ d+1∑
i=1

xi = 1, xi > 0, ∀i

}
,

and they cannot manage the boundary points essentially. In order to apply the log-ratio methods for

data on the simplex boundary, researchers have suggested perturbing the data slightly so that they all

fit into Sd, e.g., by substituting zeros with small positive values and then re-normalizing them to sum

to one. There are countless ways to do this. See Mart́ın-Fernández et al. [70, 71] for some widely-used

substitution methods. For comparisons of various zero replacement algorithms, see Rasmussen et al.

[89], Lubbe et al. [67]. Nonetheless, it has been repeatedly reported that analysis results and subsequent
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scientific conclusions are often sensitive to the choice of the zero replacement strategy. This further

complicates the data analysis process and interpretation of the results, since one must examine the

effects of the replaced zeros.

2.1.1 Main Contributions

We first point out in Section 2.2 that the underlying geometry of the above log-ratio approaches, so-

called the Aitchison geometry [6], enlarges the dependence on the zero replacement methods. Moreover,

it will be demonstrated that the log-ratio approach with zero replacement distorts the intrinsic structure

of the data substantially, which implies that this approach is theoretically unjustifiable. It motivates us

to find an alternative way to manage zeros in compositional data.

The objective of the current study is to show that kernel methods, including classical kernel ap-

proaches [100, 101, 111] and kernel mean embedding methods [45, 131, 77] can be applied to composi-

tional data containing many zeros, by considering an alternative transform of the data, which is radial

transformation. It will be seen that this transformation preserves the relative ratio information in the

composition and does not require zero substitutions, thus more appropriate than the log-ratio approaches

in handling such data.

The new domain for the transformed compositional data is a hypersphere, where a rich class of

kernels is available. We establish a theoretical framework for kernel methods in this new domain by

proving multi-level equivalences between domains before and after the transformation. We also give

a list of isotropic kernels with desirable properties such as universality. Therefore, this work enables

practitioners to employ kernel-based learning tools such as kernel principal component analysis (PCA)

and maximum mean discrepancy to compositional data in a theoretically justifiable fashion. Also, as

the computational cost of most kernel methods is O(n2) once the gram matrix is calculated, the pro-

posed method effectively provides a solution to the curse of dimensionality in analyzing high-dimensional

compositional data.

2.1.2 Related Works

A number of works have endeavored to manage zero values of compositional data without replacing

them in order to honor the essential zeros [70] of data. One popular method is to take square-root

transformation and then use the theory of directional statistics [95, 112, 120]. Butler & Glasbey [15]

proposed a latent Gaussian model on the simplex that does not require data transformation, but their

approach ignores the relative structure of compositional data. Zadora et al. [130] and Bear & Billheimer

[12] modeled the probability of zero values separately with logratio-based distributions, and so did Tsagris

& Stewert [119] but with the Dirichlet distribution on the open simplex.

We note that our geometric treatment, the radial transformation for compositional data, has been

considered in geological literature a few decades ago in Watson and Philip [124], followed by an exchange

of papers and letters to the editor between Watson and Aitchison, published in Mathematical Geology

from 1989-1992. There had been aggressive rebuttals to each other during the exchange; see Section 3

of Scealy and Welsh [96] and references therein for a summary of their arguments. A main reason for

Aitchison’s disapproval of the radial transformation was that the angular distance is not subcompostion-

ally dominant [5]. However, our proposed method does not require interpreting the distance of data but

only embeds data into a larger space where this criticism is irrelevant.

After moving onto the hyperspheres we are able to take advantage of fruitful library of kernels.
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Kernels on hyperspheres, especially isotropic types, have been broadly studied in the literature [39, 91,

99]. Isotropic kernels are also known as dot-product kernels, which are depend only on the dot product

of inputs. It is known that the decay of eigenvalues of kernels is related to the performance of learning

with kernels, and much is known for dot-product kernels on spheres; we refer to Scetbon and Harchaoui

[97] for recent exposition.

Traditional kernel methods are based on performing numerous linear approaches inside the high-

dimensional feature space via kernel embeddings, called the kernel trick [101]. In recent years, it has been

recognized that we can also embed probability distributions on the domain into the feature space. This

is called the kernel mean embedding, which are broadly applicable in arbitrary domains with appropriate

kernels. Using the kernel mean embedding, Gretton et al. [45] proposed a non-parametric two-sample

test based on the distance between probability measures, and Balasubramanian et al. [10] proposed a

goodness-of-fit test with discussions of minimax optimality. See Muandet et al. [77] for a comprehensive

review of mean embedding and other numerous applications. Universal or characteristic kernels should be

used for the mean embedding methods; Micchelli et al. [75] and Sriperumbudur et al. [109] characterized

them in various cases.

Finally, we note that a key geometric motivation of this work is shared with our previous work

[56], in which we interpret the compositional domain as a hypersphere modded out by a reflection group

action and use spherical harmonics theory to construct finite-dimensional polynomial kernels. However,

in this work, we propose an intuitive radial transformation and consider a general class of kernels, which

is computationally much more attractive.

2.1.3 Organization of the Chapter

Section 2.2 demonstrates that the log-ratio approaches produce geometric distortions to the data.

Then, we briefly review kernel methods and the pull-back construction of function spaces in Section 2.3.

In Section 2.4, we propose a radial transformation with the equivalence property that rationalizes the

analysis of the compositional data on the nonnegative part of a hypersphere. Section 2.5 briefly reviews

well-known dot-product kernels on the hyperspheres with their universality. We take the example of

kernel PCA in Section 2.6 to showcase the benefits of the proposed idea and the data distortions in log-

ratio approaches through experiements. We give conclusions and discussions of this chapter in Section 2.7

with some future research directions. Supplementary materials in Section 2.8 provide detailed information

on experiments as well as extensive additional experimental results.

2.2 Geometric Limitations

In this section, we take a deeper look at the Aitchison geometry [6] on the positive simplex ∆d
>0 and

reveal an anomalous, counter-intuitive behavior near the boundary of the simplex. Clearly an underlying

premise of zero replacement is that it causes negligible alteration in the data. However, in the following

we discuss how that cannot happen under the log-ratio scheme.

The centered log-ratio (clr) transformation is defined by

clr(x) =
(
log

x0
x′
, . . . , log

xd
x′

)
∈ Rd+1

for all x ∈ ∆d
>0, where x

′ = (x0 · · ·xd)1/(d+1). It is a homeomorphism between ∆d
>0 and a hyperplane in

Rd+1, so it transfers the linear structure and the inner product defined on the hyperplane to the open
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(a) Ternary plot of pn and qn in

∆2

(b) Plot of ilr(pn) and ilr(qn) in

R2.

(c) Squared Aitchison distance

∥ilr(pn)− ilr(qn)∥2R2

Figure 2.1: Demonstration of Aitchison geometry using two sequences pn and qn in ∆2 converging to

a common point on the simplex boundary, shown in (a). The two sequences of ilr-transformed points in

R2 shown in (b) are divergent, which is also verified by that the squared Aitchison distance between pn

and qn is divergent, as shown in (c).

simplex ∆d
>0. The geometry of clr-transformed data is called the Aitchison geometry. In this geometry,

it is crucial to note that points close to the boundary of ∆d
>0 are far from the origin (the center of the

simplex) since log y diverges to ±∞ as y → 0 or y → ∞. The problem occurs here; if a real dataset

is concentrated on a boundary point, as in microbiome data, the Aitchison geometry views the data as

diverging to infinity.

To be more specific, let us consider the following two sequences on ∆2
>0:

pn =

(
2

3
− 1

n
,
2

n
,
1

3
− 1

n

)
, and qn =

(
2

3
− 6

n1.1
,

7

n1.1
,
1

3
− 1

n1.1

)
,

with n ≥ 9. Note that both sequences converge to the same point (2/3, 0, 1/3), as displayed in the ternary

plot in Figure 2.1(a). Thus they are almost the same for all sufficiently large n. We then pass through

these sequences via the isometric log-ratio (ilr) transformation [27], which maps Aitchison geometry

of ∆2
>0 to R2 isometrically. The ilr-transformed sequences are displayed in Figure 2.1(b), where the

points exactly indicate the Aitchison geometry of pn and qn, as the ilr transformation preserves the

inner product. Here, the points ilr(pn) and ilr(qn) continue to move from left to right as n increases,

indicating that both sequences diverge as n → ∞. We also check how the similarity of pn and qn are

changed by ilr transformation. To see their relative distance in Aitchison geometry, we calculate the

distance ∥ilr(pn)− ilr(qn)∥2R2 and plot them in Figure 2.1(c). We can see that the distance between the

two sequences is clearly diverging toward infinity, although the original sequences get close to each other.

This example tells us that the Aitchison geometry tends to amplify a tiny movement near the

boundary of the simplex. Another interpretation is that points close to the boundary are close to

infinity, and the replacement of zeros in the Aitchison geometry is like towing points at infinity to a

finite position. Consequently, the configuration of log-ratio transformed data are critically dependent

on which zero replacement method is used. Since there are countless ways of replacing zeros, it may

not be possible at all to find an appropriate representation of the data in this way. Moreover, the

inconsistent interpretation of the data subject to the zero replacement method makes the results of

statistical analysis unreliable. It is also clear that if there are more zeros or the dimension is higher,

these problems exacerbate even further. In summary, the log-ratio approach with zero replacement is

theoretically unjustifiable due to the faulty representation of the data geometry.
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Figure 2.2: Comparison of the compositional radial vectors (dashed lines) and the square-root trans-

formed points (red points) on the unit circle. The relative ratios of the red points are different from

other points.

2.2.1 Square-Root Transformation

The square-root transformation of compositional data have also been considered as a transformaion-

based approach to compositional data. It sends the point x = (x0, . . . , xd) ∈ ∆d to (
√
x0, . . . ,

√
xd) so

that the transformed point lies in the first orthant of the hypersphere Sd. Since this transformation does

not suffer from zeros in the data, it has been frequently appeared in the literature, though less popular

[95, 96].

Although approaches based on this strategy are theoretically well-justified, we point out one crucial

disadvantage of the square-root transformation. Compositional data consist of relative ratios represent

in fact the corresponding radial vectors (see Section 2.4 for details). Thus, the most natural represen-

tation of the composition on a sphere is where the radial vector intersects the sphere. However, the

square-root transform produces a different point, which implies that it distorts the original composition.

Figure 2.2 illustrates it in the case of d = 1, where blue dots represent the transformed points from

our radial transformation and the red dots, clearly not preserving the ratios, are from the square-root

transformation.

2.3 Theory of Kernels and Pull-Back Construction

Here we briefly review the general theory of kernel methods and summarize a few important def-

initions. We denote by X the sample space of observations and assume that it is compact to avoid

unnecessary theoretical remarks.

2.3.1 RKHS and the Associated Feature Map

By a kernel, we mean a real-valued continuous, positive definite and symmetric function defined on

X × X throughout the chapter. Once a kernel K is given, there exists an associated reproducing kernel

Hilbert space (RKHS) HK and a feature map ΦK : X → HK which maps x ∈ X to a function

ΦK(x)(·) := K(x, ·)
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on X [101]. We omit the subscripts K if there is no confusion in notations. The Hilbert space HK is

endowed with the inner product ⟨·, ·⟩ which has the reproducing property

⟨f,Φ(x)⟩ = f(x), ∀f ∈ HK , (2.1)

which in turn implies ⟨Φ(x),Φ(y)⟩ = K(x, y). The space HK is the closed span of the image of the

feature map Φ, i.e., HK = span{Φ(x)|x ∈ X}, and also called the feature space. Kernel-based learning

means that we map the data via Φ and then apply various learning methods in HK . Multifarious linear

methods, such as PCA, kernel ridge regression (KRR), and support vector machines (SVM), can be

“kernelized” without explicitly specifying Φ since both methods depend only on the inner product of the

original data.

In order to improve the performance of linear methods in HK , it is often required that the RKHS

HK is large enough so that the transformed data are linearly analyzable. The corresponding notion to

the largeness is universal kernels, the kernels with the property that HK is dense in C(X ) where C(X )

is the space of continuous functions on X . Note that HK ⊆ C(HK) since our kernel K is continuous.

Universal kernels play several central roles in kernel methods. For example, Steinwart [110] proved the

consistency of SVM using universal kernels, together with examples of universal dot-product kernels on

Rd.

2.3.2 Kernel Mean Embedding of Probability Distributions

Identifying each data point x ∈ X with the Dirac probability measure δx centered on x, one can

extend the domain of the feature map ΦK : X → HK to the set of probability measures on X . The

extended map is called the kernel mean embedding, and the mean embedding of a probability measure P
with respect to K is defined by

µP(·) :=
∫
X
K(x, ·) dP(x).

Under the aforementioned assumptions on X and K, it is known that µP ∈ HK , and it has the generalized

reproducing property

EX∼P [f(X)] = ⟨µP, f⟩ (2.2)

for all f ∈ HK [105].

The kernel K is said to be characteristic if the corresponding mean embedding µ is injective.

Characteristic kernels play an essential role in the theory of mean embedding because they ensure that

∥µP − µQ∥HK
= 0 if and only if P = Q

for all probability measures P,Q on X . Here, the distance ∥µP − µQ∥HK
is called the maximum mean

discrepancy (MMD), whose empirical estimate can be used for non-parametric two-sample test. Gretton

et al. [45] showed that all universal kernels are characteristic, and thus we focus on universal kernels in

this work.

2.3.3 Pull-Back of RKHS

Let Y be another domain of observations, and let φ : Y → X be any (continuous) function. We

consider transferring an RKHS HK defined on the original domain X through φ. The resulting space

is called the pull-back along φ. See Section 5.4 of Paulsen and Raghupathi [82] for the proofs of the

following results.
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Given a kernel K defined on X , let K ◦ φ : Y × Y → R, the pull-back of K along φ, denote the

function given by

K ◦ φ(s, t) = K(φ(s), φ(t)) (2.3)

for all s, t ∈ Y. One can readily show that K ◦φ is positive definite and symmetric, and therefore it is a

kernel on Y. Hence the kernel K ◦ φ defines an RKHS HK◦φ of functions on Y, called the pull-back of

HK along φ. The following theorem gives a full characterization of the members of HK◦φ.

Theorem 2.1 ([82]). The elements of the RKHS HK◦φ on Y, which is generated by a kernel K ◦φ, are
completely described as

HK◦φ = {f ◦ φ | f ∈ HK}.

Furthermore, the norm of any function g ∈ HK◦φ is associated with the original RKHS norm of HK as

∥g∥HK◦φ = min
f∈HK

{∥f∥HK
| g = f ◦ φ}.

Theorem 2.1 establishes a well-defined linear map φ∗ : HK → HK◦φ given by φ∗(f) = f ◦ φ, called
the pull-back map of φ. Typically, we consider the case where Y is a subset of X and φ is the canonical

inclusion map of Y ⊆ X . We denote by K|Y = K ◦φ in this case. Then HK|Y is just a set of restrictions

of functions in HK to Y. The pull-back construction will be instrumental in formulating our theoretical

frameworks in Sections 2.4 and 2.5.

2.4 Radial Transformation and Equivalence of Function Spaces

As we showed inadequacies of traditional methods for compositional data with zeros in Section 2.2,

we suggest a new alternative approach in the present section. We propose to use RKHS embeddings of

compositional domains, together with the radial viewpoint of compositional data mentioned briefly in

Section 2.2.1. We first point out that there are equivalent expressions of compositional data along the

radial direction, and then prove that function-theoretic and RKHS approaches to these expressions are,

in fact, equivalent. Therefore, it is natural to look for the most convenient domain for analysis, and we

claim that the hypersphere meets these needs. Since compositional data are mostly normalized onto the

simplex, we define a radial transformation sending data on the simplex to the hypersphere and proceed

with our main results.

2.4.1 Ratio-Preserving Radial Transformation

Recall that compositional data consist only of relative information, which is scale-invariant. This

invariance implies that the ratio information is inherent in the corresponding radial vectors, thus the

radial vectors possess the core of compositions. Taking this viewpoint into account, we can interpret the

simplicial expression of compositional data as the intersection of nonnegative radial vectors and a linear

manifold.

From this radial interpretation, we realize that other representations of compositional data are pos-

sible depending on the choice of intersection manifold. For example, we may choose hyperspheres or

hypercubes, which would yield hyperspherical or hypercubical expression of compositional data respec-

tively. We already saw in Figure 2.2 that the blue dots, the intersection of the circle and the radial vectors,

equivalently represent the corresponding compositional data on the simplex ∆1. Then the following two

questions naturally arise:
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(a) Are the data analysis results independent of the choice of representations?

(b) If so, which representation of compositional data is most convenient for computations and expected

to give satisfying results in general?

We show that the first question is affirmative for function-theoretic or kernel-based analyses in the

following subsections. The equivalence of RKHS embeddings on various domains of compositional data

is derived by the pull-back construction in Section 2.3.3. Note that computations of pull-back kernels

are often unnecessarily complicated in practice, and thus it is preferable to fix an appropriate domain on

which various easily computable and well-studied kernels exist. For the second question, we claim that

the hyperspherical expression is best for kernel learnings as there are a plethora of easily computable

kernels on hyperspheres with desirable decay of eigenvalues [97]. Because understanding the decay of

kernel eigenvalues is important for low-dimensional interpretation of the results from kernel learnings,

we believe that the sphere is the safest domain in this regard.

Along these lines, we define a radial transformation ψ : ∆d → Sd≥0 by

ψ(x) =
x

∥x∥2
for all x ∈ ∆d,

where Sd≥0 denotes the nonnegative part of Sd. In the following subsections, we prove the equivalences

of two types of function spaces that answer the question (a). The statements and proofs are written in

terms only of ψ, but they can be immediately generalized to arbitrary homeomorphic transforms along

the radial direction.

2.4.2 Function-Theoretic Equivalence

Note that ψ is continuous, and we readily obtain the continuous inverse π : Sd≥0 → ∆d of ψ, where

π(y) = y/∥y∥1. Thus, the domains ∆d and Sd≥0 are homeomorphic, i.e., they are topologically equivalent.

This equivalence leads to a well-known identification of spaces of continuous functions, stated as follows.

Proposition 2.2. The homeomorphism ψ induces an isometric isomorphism of function spaces

C(∆d) ∼= C(Sd≥0).

Hence, function-theoretic analysis on the space C(∆d) is equivalent to the corresponding analysis

on C(Sd≥0). For example, if one wants to find a continuous function on ∆d that interpolates the given

data, it suffices to find the corresponding one on Sd≥0 based on the equivalence.

2.4.3 Equivalence of RKHS Embeddings

We also verify that the radial transformation ψ induces the equivalence between RKHS embeddings

on ∆d and Sd≥0. Let K be a kernel defined on Sd≥0 and let K ◦ ψ denote the pull-back along ψ given by

(2.3). The pull-back map ψ∗ : HK → HK◦ψ defined in Section 2.3.3 establishes the following equivalence.

Theorem 2.3. ψ∗ : HK → HK◦ψ is an isometric isomorphism of Hilbert spaces. Furthermore, the

feature maps associated to K and K ◦ ψ are compatible with ψ∗ in the sense that the following diagram

commutes.

∆d HK◦ψ

Sd≥0 HK

ΦK◦ψ

ψ

ΦK

ψ∗
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The diagram expresses that ψ∗ΦKψ(x) = ΦK◦ψ(x) for all x ∈ ∆d. Note that the vertical maps are

invertible so that the feature maps ΦK and ΦK◦ψ describe each other. It implies that they are essentially

equivalent and that any method using the kernel feature map applied in either of the two domains gives

the same result via pull-back kernels.

Proof of Theorem 2.3. By the reproducing property (2.1), for all f ∈ HK , for a finite linear combination∑
iK(xi, ·) we have 〈

ψ∗(f),
∑
i

ψ∗K(xi, ·)

〉
HK◦ψ

=
∑
i

ψ∗(f)(ψ−1(xi))

=

〈
f,
∑
i

K(xi, ·)

〉
HK

.

As the finite linear combinations
∑
iK(xi, ·) are dense in HK , it follows that

⟨f, g⟩HK
= ⟨ψ∗(f), ψ∗(g)⟩HK◦ψ

for all f, g ∈ HK , which proves ψ∗ is an isometric isomorphism. The commutativity of the diagram is

readily seen from simple evaluations.

The kernel feature maps in Theorem 2.3 can be generalized to kernel mean embeddings. Let P(X )

denote the space of Borel probability measures on X . The function ψ : ∆d → Sd≥0 extends to a function

ψ∗ : P(∆d) → P(Sd≥0) of spaces of probability measures, called the push-forward of ψ; see, e.g., Section

3.6 of Bogachev and Ruas [13]. Then the generalization of Theorem 2.3 is stated as follows.

Theorem 2.4. The following diagram

P(∆d) HK◦ψ

P(Sd≥0) HK

ψ∗ ψ∗

is commutative where the horizontal maps are kernel mean embeddings.

Proof of Theorem 2.4. It is straightforward from the definition of the push-forward map ψ∗ and the

generalized reproducing property (2.2). To elaborate, let µ and ν denote the kernel mean embeddings of

∆d and Sd≥0, respectively. For a probability measure P on ∆d, we need to show

µP = ψ∗νψ∗P,

so it is enough to check the right hand side satisfies the generalized reproducing property of µP. For

f = ψ∗g ∈ HK◦ψ, we have

⟨ψ∗νψ∗P, f⟩HK◦ψ
= ⟨νψ∗P, g⟩HK

(Theorem 2.3)

= EX∼ψ∗P[g(X)] (2.2)

= EX∼P[f(X)] (Change of variables)

The uniqueness of Riesz representer of Hilbert spaces finishes the proof; the diagram commutes.

We conclude from Theorems 2.3 and 2.4 that all results obtained by kernel methods on ∆d can be

obtained by applying the corresponding methods on Sd≥0. This will allow us to analyze compositional

data using various well-studied kernels on the hypersphere Sd. From here on, we equate ∆d and Sd≥0 and

call them compositional domains.
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Table 2.1: A parametric family of isotropic kernels on Sd and their universality. The parameters γ and

β are positive real numbers, and p is a positive integer. For Matérn kernels, θ stands for ⟨x, y⟩, and Kν

is the modified Bessel function of the second kind of order ν ∈ (0, 12 ].

Kernels K(x, y) Universal

Linear ⟨x, y⟩ ×
Polynomial (γ⟨x, y⟩+ 1)p ×
Gaussian exp (−γ∥x− y∥22) ◦
von-Mises exp (γ⟨x, y⟩) ◦
Matérn 21−ν

Γ(ν)

(
θ
γ

)
Kν

(
θ
γ

)
◦

Rational quadratic (∥x− y∥22 + γ2)−β ◦

2.5 Kernels on Compositional Domains

Having discussed the equivalence between compositional domains, here we study what kernels can

be used for the analysis of compositional data. As Sd≥0 is a subset of the hypersphere Sd, it is natural to
utilize the restriction of kernels on Sd. Their RKHS embeddings are expressed as pull-backs discussed in

Section 2.3.3. We start with reviewing examples of kernels on hyperspheres.

2.5.1 Isotropic Kernels on Sd

An alternative name of the dot-product kernel is the isotropic kernel. To be specific, a kernel

K : Sd × Sd → R is said to be isotropic if there exists a function k : [0, π] → R such that

K(x, y) = k(arccos ⟨x, y⟩) ∀x, y ∈ Sd,

where ⟨·, ·⟩ denotes the usual dot product in Rd+1. Hence, the values of isotropic kernels on Sd depend

only on the geodesic distance, or equivalently, on the angle of two input variables. Gneiting [39] provides

an extensive survey of these kernels.

Isotropic kernels on spheres have been studied for a long time since Schoenberg [99], and they are

broadly used in directional data analysis. For a recent example, see Balasubramanian et al. [10] for

goodness-of-fit tests on Sd with the Gaussian kernel. Note that the Gaussian kernel fits to the definition

of the isotropic kernel.

2.5.2 Universal and Characteristic Kernels

As mentioned in Section 2.3.2, the universality or characteristicity of kernels is required to apply

kernel mean embedding methods properly. Micchelli et al. [75] provide a complete characterization of

isotropic universal kernels on Sd that have strictly positive coefficients in the Gegenbauer expansions.

It is proved that various broadly-used kernels on spheres are universal, and thus it suffices to check the

following theorem to utilize them on the compositional domain.

Theorem 2.5. Let K be a kernel on Sd.

(i) If K is universal, then the restriction K|Sd≥0
is universal.
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Figure 2.3: Ternary plot of the simulated data with d = 2.

(ii) If K is characteristic, then the restriction K|Sd≥0
is characteristic.

The proof of Theorem 2.5(i) can be found in, for example, Lemma 4.55 of Steinwart and Christmann

[111]. We state the characteristicity in Theorem 2.5(ii) for completeness, although universality is sufficient

in practice. Since it is readily proved from the generalized reproducing property (2.2), the proof is omitted

here.

Proof. Let P and Q be two probability measures on Sd≥0 and let i : Sd≥0 → Sd denote the inclusion map.

Suppose EX∼P[f(X)] = EX∼Q[f(X)] for all f ∈ HK|Sd≥0

. By change of variables formula and the pullback

theorem 2.1, this implies that

EX∼i∗P[f(X)] = EX∼i∗Q[f(X)] for all f ∈ HK ,

where i∗ denotes the pushforward map of measures. We have i∗P = i∗Q since K is characteristic, and

this implies that P = Q.

We summarize some well-known and easily computable isotropic kernels on Sd in Table 2.1. Their

universality properties are also marked for their use in mean embedding methods.

2.6 Empirical Examples

2.6.1 Illustrative Examples

First, we generate simulated compositional data with many zeros to illustrate the effectiveness

of the proposed method. Data with sample size 1000 are generated using random samples from d-

dimensional multivariate normal distribution with zero mean vector and identity covariance matrix, and

then normalized to have a radius of one. After that, four different radius values are multiplied to create

four subgroups. The size of each subgroup is proportional to the radius and Gaussian noise with variance

inversely proportional to the radius is added. Then we make the data compositional by applying a linear

transformation and projecting the points outside of the simplex to the boundary. The detailed description

of the data generation process is in the supplementary material, Section 2.8. The simulated data have
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(a) radial transform

(γ = 150)

(b) radial transform

(γ = 60)

(c) clr transform

(γ = 0.001)

(d) clr transform

(γ = 0.005)

Figure 2.4: Projection plots from kernel PCA with Gaussian kernel using the radial transformed data

in (a) and (b), and the clr transformed data in (c) and (d). Each color corresponds to the label of the

data shown in Figure 2.3. Here, γ indicates the parameter for Gaussian kernel.

about 40% of zero values. For illustration, Figure 2.3 displays the simulated data for d = 2 on a ternary

plot. In the actual analysis, we use d = 100 and d = 15.

In order to see the difference in the geometries of the proposed transformation and the log-ratio

method, we implement kernel PCA to the simulated data with d = 100. Note that in this case all data

points are on the boundary of the simplex. Figure 2.4 shows projection plots from kernel PCA using

Gaussian kernel with two different values of the parameter γ, for both the radial transformed data and

the clr transformed data. For the clr transformation, we replace the zeros with (1/2)xmin where xmin

is the minimum positive value of each composition. It can be clearly seen that the radial transform

preserves the separation of the four groups, and particularly in (b) we see that the variance information

of the groups is well retained in the embedded space. On the other hand, all meaningful characteristics

in the original compositional data disappear in the clr transformed data, as seen in (c) and (d). It is well

known that the geometry of the embedded space heavily depends on the kernel parameter even within

the same kernel [2]. In this regard, we should point out that the results from the clr transform never

become like (a) or (b), regardless of the parameter. It should be also noted that polynomial kernel with

p = 3, γ = .1 and von-Mises kernel with γ = 10 on the radial transformed data yield a similar result to

Figure 2.4(b). We refer to the supplementary Section 2.8.2 for use of other kernels and parameters.

We also examine how different zero replacement methods can produce different Aitchison geometry.

We implement three methods for the clr transformation, which are lrDA, lrEM, and simple replacement

of (1/2)xmin, and compared them with the radial transformed data in Figure 2.5. The results of lrDA
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(a) radial transform

(γ = 50)

(b) lrDA-clr

(γ = 0.001)

(c) lrEM-clr

(γ = 0.001)

(d) (1/2)xmin-clr

(γ = 0.001)

Figure 2.5: Demonstration on how different zero replacement methods can yield vastly different results.

For simulated compositional data with d = 15, kernel PCA with Gaussian kernel is implemented for

radial transformed data in (a) and for clr transformed data in (b)–(d) based on three different zero

replacement methods.

and lrEM are produced by the R package zCompositions [79]. Due to the computational limitation of

the R package, we use the simulated data with d = 15 for this figure. Note that in our simulation setting,

the lower the dimension is, the more overlap the subgroups have. We can see from Figures 2.5(b)-(d)

that kernel PCA with any of the three zero replacement methods fails to distinguish the subgroups, and

that the overall shapes of the projected data are quite different from one another. On the contrary,

kernel PCA with the radial transformed data in (a) is able to distinguish the subgroups much better.

2.6.2 Quantitative Evaluation of the Proposed Method

We then provide a quantitative assessment of kernel PCA on new synthetic data and real-world

data examples. The eigenvalues of the Gram matrix, denoted by λ1, . . . , λn, are used to measure the

effectiveness of kernel PCA. Note that as in linear PCA, eigenvalues of the Grammatrix can be interpreted

as the amount of information that each principal component (PC) holds. Thus the number of PCs that

are necessary to account for, say 90% of the variability in the data, is calculated as the smallest m such

that
∑m
i=1 λi/

∑n
i=1 λi ≥ .9. The smaller this number is, the more efficient dimension reduction we can

achieve by kernel PCA. We implement kernel PCA with the Gaussian kernel after the radial and the clr

transformation, where we replace zeros with (1/2)xmin before the clr transformation.
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Figure 2.6: Number of PCs needed to capture the variability in synthetic data. The sample size is fixed

at n = 100 for the left panel and the dimension is p = 500 on the right panel.

Synthetic Data

We simulate high-dimensional compositional data following Te Beest et al. [114] with slight modi-

fications to reflect a much higher percentage of zeros in real-world microbiome datasets. The data are

generated as a matrix of counts X, whose (i, j)-entry is drawn from a negative binomial distribution

with mean µij and variance µij + µ2
ij , where each µij is modeled by a log-linear model

logµij = ai + tj + bjxi,

i = 1, . . . , n, j = 1, . . . , p where n is the number of samples and p is the number of taxa. The term ai

reflects the size of total counts and is drawn from N(−1.5, 1), tj reflects the abundance of taxon j and

is drawn from N(−0.5, 2), and xi is a binary 0-1 variable representing two different treatment groups of

equal size with the effect size bj on taxon j. Twenty percent of p taxa are made differentially abundant

at random with equal probability, being either up- or down-regulated by setting bj to be log 3 or − log 3.

After data generation, taxa present in less than five samples are considered meaningless and removed.

Typically, the simulated data have about 69.5 ± 1.5% of zeros which is more or less similar to real

data examples in Table 2.2. Figure 2.6 displays the means and standard errors of the number of PCs

needed to explain 50% and 90% of the total variance based on 100 replications. It can be seen that

the radial transformation shows far better performance than the clr transformation in all cases. From

the perspective of Section 2.2, the result indicates that zero-replacements in Aitchison geometry disperse

data erratically. This also underpins the poor projection plots of clr transformed data in Section 2.6.1.

Real Data Examples

We also analyze real-world microbiome datasets, whose availability is listed in the supplementary

Section 2.8.4. Their attributes such as n, p, and the percentage of zeros are presented in Table 2.2, with

the number of PCs needed to explain 50%, and 90% of the total variation of the data using the radial

or clr transformation, respectively. From Table 2.2, it is evidenced that the radial transform (rad-50%

or rad-90%) shows better performance than the clr transform (clr-50% or clr-90%) with respect to the

efficiency of dimension reduction.
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Table 2.2: Number of PCs needed for real data examples.

Dataset n p Zero proportion rad-50% rad-90% clr-50% clr-90%

Arumugam et al. [8] 280 553 67% 1 8 1 18

Carrieri et al. [16]1 1200 186 58% 4 15 24 111

Carrieri et al. [16]1 278 186 69% 4 16 19 82

Charlson et al. [18] 60 856 89% 4 17 9 39

Gimblet et al. [35] 632 1860 95% 1 8 8 142

Hayden et al. [46] 1279 643 93% 5 35 22 128

Schiffer et al. [98] 381 780 76% 3 17 3 52

1 The article provides two datasets, one from the Canada cohort (first) and the other from the UK cohort

(second).

2.7 Conclusions and Discussions

In this chapter, we showed that it is possible to use kernel-based learning for compositional data

via radial transformation and pointed out that the traditional log-ratio approaches might lose their

justification when applied to the compositional data with high proportion of zeros. We also provided

an appropriate mathematical framework for theoretical justification and demonstrated the idea with

examples. We believe that many scientific questions regarding compositional data will be answered

by newly enabled statistical inference and analysis using kernels, such as graphical models, hypothesis

testing, and regression models.

A unique feature of microbiome data is that each variable in the composition, namely bacterial

taxon, corresponds to a node in the phylogenetic tree. One of the most common ways to define a

distance between two microbiome compositions is to measure the β-diversity based on the tree [65],

which is called the UniFrac distance. Principal coordinates analysis, equivalently multi-dimensional

scaling, is then used to obtain the leading eigenspace to find the best low-dimensional representation of

the data. It is straightforward to see that the UniFrac distance matrix essentially plays the same role

as the kernel matrix in kernel PCA. Then it is natural to wonder about the properties of this “UniFrac

kernel”, which can be an interesting direction for future research.

2.8 Supplementary Materials

This section provides supplementary materials for this chapter. We describe the detailed process for

our simulated data generation and provide additional experimental results that support our discussions

in Section 2.6. We also give data availability for real data experiments conducted in Section 2.6.2.

2.8.1 Simulated Data Generation Process

This section covers the detailed description for the generation of simulated data in Section 2.6.1.

The experimental data are generated on the d-dimensional simplex ∆d with a hyperspherical shape

and four clusters with different radii. Each cluster is generated through an identical procedure but with

a different radii. We describe the detailed steps as follows:
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Step 1 (Spherical generation). Let r denote the primary radius assigned to each cluster. Initially, r

is set as 1, 2, 3, 4, and we generate, for each cluster, 100× r random samples drawn from the multivariate

normal distribution N(0d, Id), labeled differently by their cluster. Then, we normalize them onto the

hyperspheres Sd and add Gaussian noises with N(0d, (0.01/r)Id) respectively. Hence, each cluster’s

sample size is proportional to the radius, whereas the Gaussian noise is inversely proportional to the

radius.

Step 2 (Scaling and shifting). The scale parameter
r

10
√
d/4 + 0.5

is multiplied to each clus-

ter. Then, we linearly shift the data by adding the d-dimensional vector [0.15/(d − 1), · · · , 0.15/(d −
1), 0.04/(d− 1)].

Step 3 (Projection to the simplex ∆d). Among the whole data, we replace the component values

below zero by zero; i.e., they are projected to the boundary of ∆d. Until now, the generated data live in

Rd. Finally, we project the resulting data to ∆d ⊂ Rd+1 by creating the last coordinate have the value

of 1− (sum of the other components). Note that the last sum never exceeds 1 due to our appropriately

chosen scale parameters and the variance of the Gaussian noise.

2.8.2 Kernel PCA with Various Kernels and Parameters Using Radial Trans-

formed and clr-Transformed Data

In this section, we present additional results from kernel PCA with various kernels and parameters

regarding Figure 2.4 in the body of the chapter. We use the same radial transformed and clr transformed

data with (1/2)xmin zero replacements. For kernels, Gaussian, polynomial, and von-Mises kernels are

used. For the polynomial kernel, the degree p = 3 is used. The parameter γ ranges from 1 to 100 for the

radial transformed data, and from 0.0001 to 0.01 for the clr transformed data. The difference in ranges

is due to the different magnitudes in the transformed data.

Gaussian kernel

Kernel PCA projection plots using Gaussian kernel for the radial transformed data are given in

Figure 2.7. For kernel PCA results with the clr transformed data, see Figure 2.8. We still observe

with the various parameter choices that the obvious manifold pattern in our dataset is distorted in clr-

transformed data after zero replacement. The displayed parameters are chosen based on the plots being

clearly visible.

(a) radial transform

(γ = 1)

(b) radial transform

(γ = 10)

(c) radial transform

(γ = 50)

(d) radial transform

(γ = 100)

Figure 2.7: Projection plots from kernel PCA with Gaussian kernel using the radial transformed data

by various values of parameter.
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(a) clr transform

(γ = 0.0001)

(b) clr transform

(γ = 0.0005)

(c) clr transform

(γ = 0.001)

(d) clr transform

(γ = 0.01)

Figure 2.8: Projection plots from kernel PCA with Gaussian kernel using the clr transformed data by

various values of parameter.

Polynomial kernel

With the same criteria but the kernel is changed, we display the results in Figure 2.9 and Figure 2.10.

The results are very similar to the Gaussian kernel case.

(a) radial transform

(γ = 1)

(b) radial transform

(γ = 10)

(c) radial transform

(γ = 50)

(d) radial transform

(γ = 100)

Figure 2.9: Projection plots from kernel PCA with polynomial kernel using the radial transformed data

by various values of parameter.

(a) clr transform

(γ = 0.0001)

(b) clr transform

(γ = 0.0005)

(c) clr transform

(γ = 0.001)

(d) clr transform

(γ = 0.01)

Figure 2.10: Projection plots from kernel PCA with polynomial kernel using the clr transformed data

by various values of parameter.

von-Mises kernel

The results using von-Mises kernel are displayed in Figure 2.11 and Figure 2.12. The results for the

radial transformed case is similar to the other kernels. Since the von-Mises kernel takes exponential of

inner products, the numerical results are very unstable after clr transformation.
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(a) radial transform

(γ = 1)

(b) radial transform

(γ = 10)

(c) radial transform

(γ = 50)

(d) radial transform

(γ = 100)

Figure 2.11: Projection plots from kernel PCA with von-Mises kernel using the radial transformed data

by various values of parameter.

(a) clr transform

(γ = 0.0001)

(b) clr transform

(γ = 0.0005)

(c) clr transform

(γ = 0.001)

(d) clr transform

(γ = 0.01)

Figure 2.12: Projection plots from kernel PCA with von-Mises kernel using the clr transformed data

by various values of parameter.

2.8.3 Kernel PCA with Various Kernels and Parameters Using lrDA and

lrEM Zero Replacement Methods

In this section, we present additional results from kernel PCA with various kernels and parameters

regarding to Figure 2.5. We use the same lrDA-clr and lrEM-clr transformed data. Again, the degree is

p = 3 for the polynomial kernel.

Gaussian kernel

Using the Gaussian kernel with various parameters, the kernel PCA projection plots for the lrDA-clr

transformed data is given in Figure 2.13 and for the lrEM-clr transformed data is given in Figure 2.14.

We can observe that changing the zero replacement method does not prevent the data distortion problem

pointed out in Section 2.2.

(a) lrDA-clr

(γ = 0.0001)

(b) lrDA-clr

(γ = 0.0005)

(c) lrDA-clr

(γ = 0.001)

(d) lrDA-clr

(γ = 0.01)

Figure 2.13: Projection plots from kernel PCA with Gaussian kernel using the lrDA-clr transformed

data by various values of parameter.
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(a) lrEM-clr

(γ = 0.0001)

(b) lrEM-clr

(γ = 0.0005)

(c) lrEM-clr

(γ = 0.001)

(d) lrEM-clr

(γ = 0.01)

Figure 2.14: Projection plots from kernel PCA with Gaussian kernel using the lrEM-clr transformed

data by various values of parameter.

Polynomial kernel

We obtain similar results to the Gaussian kernel case, given in Figure 2.15 and Figure 2.16.

(a) lrDA-clr

(γ = 0.0001)

(b) lrDA-clr

(γ = 0.0005)

(c) lrDA-clr

(γ = 0.001)

(d) lrDA-clr

(γ = 0.01)

Figure 2.15: Projection plots from kernel PCA with polynomial kernel using the lrDA-clr transformed

data by various values of parameter.

(a) lrEM-clr

(γ = 0.0001)

(b) lrEM-clr

(γ = 0.0005)

(c) lrEM-clr

(γ = 0.001)

(d) lrEM-clr

(γ = 0.01)

Figure 2.16: Projection plots from kernel PCA with polynomial kernel using the lrEM-clr transformed

data by various values of parameter.

von-Mises kernel

As before, the kernel PCA fails to capture the manifold structure of the simulated data, and the

numerical results are fairly unstable due to the exponential computation. See Figure 2.17 and Figure 2.18

for the results.
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(a) lrDA-clr

(γ = 0.0001)

(b) lrDA-clr

(γ = 0.0005)

(c) lrDA-clr

(γ = 0.001)

(d) lrDA-clr

(γ = 0.01)

Figure 2.17: Projection plots from kernel PCA with von-Mises kernel using the lrDA-clr transformed

data by various values of parameter.

(a) lrEM-clr

(γ = 0.0001)

(b) lrEM-clr

(γ = 0.0005)

(c) lrEM-clr

(γ = 0.001)

(d) lrEM-clr

(γ = 0.01)

Figure 2.18: Projection plots from kernel PCA with von-Mises kernel using the lrEM-clr transformed

data by various values of parameter.

2.8.4 Data availability

Specific data availability for real data examples in section 2.6.2 are summarized in Table 2.3.

Table 2.3: Data availability for real data examples.

Dataset Data Source

Hayden et al. [46] ‘BONUS-CF (WGS)’ dataset from MicrobiomeDB.org

Gimblet et al. [35] ‘Experimental cutaneous leishmaniasis’ dataset from MicrobiomeDB.org

Arumugam et al. [8] ‘enterotype’ dataset in R package phyloseq

Carrieri et al. [16] Supplementary material of the referenced article

Charlson et al. [18] ‘throat.otu.tab’ dataset in R package GUniFrac

Schiffer et al. [98] ‘vaginal.otu.tab’ dataset in R package GUniFrac
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Chapter 3. Conditional Covariance Operator of RKHS and

Generalized Kernel Dimension Reduction

3.1 Introduction

In Chapter 2, we demonstrated that a wide range of kernel methods, from classical ones like kernel

principal component analysis (KPCA) [100], kernel fisher discriminant analysis (KFDA) [76], kernel ridge

regression (KRR), and support vector machines (SVM) [101] to recent advances in kernel mean embedding

methods such as kernel two-sample test via maximal mean discrepancy (MMD)[45] and Hilbert-Schmidt

independence criterion (HSIC) [44], apply successfully to compositional data with taking care of geometric

structures. These kernel methods on the compositional domain naturally treat the prevalent zero values

in compositional data in practice, providing a more rigorous class of compositional data analysis methods

than the traditional log-ratio approach.

However, the application of these kernel methods to practical datasets is not without challenges;

notably, an issue of high dimensionality arises. This is particularly evident in microbiome data, our mo-

tivating dataset, where the number of variables often significantly exceeds the number of samples. It is

known that numerous kernel methods with a popular choice of kernels suffer from the curse of dimension-

ality; for example, Donhauser et al. [23] demonstrated that the kernel ridge regression with rotationally

invariant kernels can only fit low-degree polynomials in high dimensions, and Ramdas et al. [88] addressed

the decreasing power of the kernel two-sample test with Gaussian and Laplace kernels in high dimensions.

Furthermore, because the common data standardization process destroys the structure of compositional

data, we cannot apply standardization before using kernel methods with popular distance-based kernels,

resulting in numerical biases in high-variance coordinates. As a result, applying those kernel methods

directly to high-dimensional compositional data may lead to suboptimal performances.

One simple and intuitive way of solving this problem is to develop kernel-based dimension reduction

methods that retain as much data information as possible. In addition, it is desirable to have interpretable

dimension reduction results in terms of original variables since it is vital in many biological applications.

Classical RKHS methods, such as KPCA or KFDA, fail to produce interpretable results since the variable

information is lost during the first RKHS embedding. In contrast, the kernel dimension reduction (KDR)

method of Fukumizu et al. [34] offers an interpretable dimension reduction in Euclidean space because

their method applies RKHS embedding after orthogonal projection of data. In particular, the KDR

method aims for linear sufficient dimension reduction (SDR) [60], representing that the data projection

does not change the conditional distribution of the response variable:

Y ⊥⊥X |BTX,

where X is a vector of covariates, Y is a response, and B is an orthogonal projection matrix. This

framework of linear SDR primarily focuses on finding the best orthogonal projection spanning an SDR

subspace. However, since orthogonal projections of compositional data do not retain their compositional

nature, there is a need for a more suitable approach. It is crucial to first define a class of suitable

and interpretable dimension reduction maps designed for compositional data to retain interpretability.

In Chapters 4 and 5, we shall define particularly structured projection maps for compositional data to

accomplish this. Considering their unique relative structures, we will describe appropriate classes of
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variable selections and dimension reduction maps.

Instead, this chapter focuses on expanding the KDR theory to encompass arbitrary measurable pro-

jections of particular interest. The main advantage of the KDR approach over other existing nonlinear

sufficient dimension reduction methods is that it maintains the interpretable structure of the dimension

reduction functions. Lee et al. [53] also proposed two generalized nonlinear SDR methods, generalized

sliced inverse regression (GSIR) and generalized sliced average variance estimator (GSAVE), but these

methods also sacrifice the interpretability of the projection result, even though their methods can be

applied to compositional data without replacing zeros. In contrast, we will see throughout this chapter

that the KDR approach is capable of generalizing to the broader family of specifically structured dimen-

sion reductions, not confined to orthogonal projections. This signifies that the simple intuition behind

the KDR theory generalizes well: finding a dimension reduction map p that minimizes the conditional

covariance of Y given p(X) will result in a desirable dimension reduction.

In particular, we generalize that minimizing the conditional covariance operator of Y given p(X)

among p ∈ F also approaches SDR in Section 3.4, where F is a certain family of dimension reduction

functions for X. Furthermore, if the family F satisfies some continuity assumptions and is equipped with

a metric that makes it a compact metric space, we prove in Section 3.6 that the empirical M-estimator for

our generalized kernel dimension reduction is consistent. Such families F will include the Stiefel manifold

of orthogonal matrices and our compositional dimension reductions will be defined in Chapter 5. We

elaborate on all the details for our generalization process because the original theory makes use of some

unique properties of orthogonal matrices. As a result, we will confirm that our generalized theory holds

surprisingly under milder assumptions than originally assumed in Fukumizu et al. [34]. We should also

note that our theory is formulated in general terms of nonlinear dimension reductions: its applicability

is not limited to compositional data.

The rest of this chapter is outlined as follows. We first extensively review the theory of kernel mean

embeddings and their interpretation via function-valued integration in Section 3.2. We define cross-

covariance operators of RKHS in Section 3.3 and interpret them as a covariance of embedded random

variables in RKHS. Section 3.4 introduces the theory of conditional covariance operator and prove our

generalized version of the KDR method, as well as some discussions on the generalized unsupervised KDR

framework. We provide a thorough computation process for the empirical estimate of the conditional

covariance operator in Section 3.5. Then, we prove that the M-estimator of generalized kernel dimension

reduction is statistically consistent in Section 3.6. Section 3.7 concludes this chapter with discussions on

potential applications of our generalized result.

3.2 Kernel Mean Embedding and Function-Valued Integrations

Kernel mean embedding is pivotal in the analysis of probability measures with the refined structure

of reproducing kernel Hilbert spaces. Once we embed a random variable using an RKHS embedding,

taking the expectation of the embedded variable turns out to be an embedding of the original probability

measure. To describe this precisely, we need notions of RKHS-valued integrations and random variables

defined on an RKHS. As the kernel mean embedding and its rigorous foundations will play a crucial role

in our proposed method and theory, we briefly review their definitions and essential properties that will

be needed later.

Throughout the chapter, we let X denote a compact subset of Euclidean space and let Y denote the

domain of responses. The compactness of X is not restrictive, often assumed in the literature, and fit our

27



purpose: the compositional domain ∆m is compact. As X is compact, it is natural to assume that Y is

also compact. Let kX and kY be kernels (recall that we assumed kernels are continuous, symmetric, and

positive definite in Chapter 2) on X and Y, respectively. These kernels uniquely define the associated

RKHSs HX and HY , respectively, with the reproducing property (2.1). We denote the associated feature

maps by ϕ(x) = kX (x, ·) ∈ HX and ψ(y) = kY(y, ·) ∈ HY .

Let (X,Y ) ∈ X × Y be a joint random vector, with the joint distribution PXY . We also denote the

marginal distributions of X and Y by PX and PY , respectively. Since we always deal with continuous

kernels on compact domains, we have the following boundedness:

EX [kX (X,X)] <∞ and EY [kY(Y, Y )] <∞. (3.1)

Note that most kernel methods in practice uses continuous and bounded kernels, so our assumption

is very weak. Such a minimal assumption ensures that the corresponding RKHSs HX and HY are

continuously embedded in the L2(PX) and L2(PY ), respectively, since

EX [f(X)2] = EX [⟨f, kX (X, ·)⟩2HX
] ≤ ∥f∥2HX

EX [kX (X,X)]

for all f ∈ HX . In addition, the boundedness (3.1) ensures the existence of kernel mean embeddings,

µ : P(X ) → HX , P 7→ µP ∈ HX : x 7→
∫
X
kX (x, z)dP(z), (3.2)

where P(X ) is the space of probability measures on X and P ∈ P(X ). Indeed, given a probability

measure P ∈ P(X ), the linear functional LP(f) := EX∼P[f(X)] on HX is bounded because

|LP(f)| ≤ EX∼P[|f(X)|] = EX∼P[⟨f, kX (X, ·)⟩HX ] ≤ ∥f∥HXEX∼P[
√
kX (X,X)]

≤ ∥f∥HXEX∼P[kX (X,X)],

here the Hölder’s inequality is applied twice. Then, the Riesz representer ρP ∈ HX of LP exists and

satisfies, for kX (x, ·) ∈ HX ,

ρP(x) = ⟨ρP, kX (x, ·)⟩HX = EX∼P[kX (x,X)] =

∫
X
kX (x, z)dP(z) = µP(x).

Therefore, µP = ρP is a well defined element in HX for every probability measure P on X , representing

an embedding of P into HX by a kernel function kX .

3.2.1 Bochner Integral and Their Basic Properties

The integration in the definition (3.2) of the mean embedding µP can be written instead as a

function-valued integration,

µP(·) =
∫
X
kX (·, z)dP(z) ∈ HX . (3.3)

Here, kX (·, z) is an element ofHX , and the association z 7→ kX (·, z) ∈ HX can be thought of as a function-

valued continuous function f : X → HX (recall that kX is continuous), where HX is equipped with a

Borel σ-field. The foundation of such a function-valued integration is established with a more general

language of Banach spaces since only completeness and the property of norms are required to develop

the relevant generalized theory. It is called a Bochner integral, and we briefly review its construction

and properties in this subsection. See Section 2.6 of Hsing and Eubank [48] for detailed information and

related results.

Let (X ,B, ν) be a measure space and let f be a function on X that takes values in a Banach space

B, equipped with a Borel σ-field. We can proceed a similar construction of Lebesgue integration of

scalar-valued functions as follows.
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Definition 3.1 (Simple functions). A function f : X → B is called simple if its range consists of only

finitely many points. If we write the range as ran(f) = {h1, . . . , hn} ⊂ B and Ej = f−1({hj}), then f is

represented as a finite B-linear combination of indicator functions

f(x) =

n∑
j=1

1Ej (x)hj ∈ B,

where 1Ei denotes the indicator function.

Every simple function is represented uniquely as above, called the standard representation [30] of f .

Note that the Ej above are measurable if the function f is measurable.

Definition 3.2 (Bochner integral of simple measurable functions). If a simple measurable function f

has standard representation f(x) =
∑n
j=1 1Ej (x)hj and it satisfies ν(Ej) <∞ for all j, then f is said to

be Bochner integrable with its Bochner integral∫
X
f dν =

n∑
j=1

ν(Ej)hj .

Extension of the Bochner integral of simple functions to the general measurable functions can be

stated with the ordinary scalar-valued Lebesgue integration as follows.

Definition 3.3 (Bochner integrable functions). A measurable function f : X → B is called Bochner

integrable if there exists a sequence {fk} of simple Bochner integrable functions such that

lim
k→∞

∫
X
∥fk − f∥B dν = 0.

In this case, we define the Bochner integral of f by∫
X
f dν := lim

k→∞

∫
X
fk dν. (3.4)

The right hand side of the definition (3.4) is well-defined, which is a straightforward consequence of

the completeness of the Banach space B. If B is a separable Hilbert space, then its Bochner integrability

is readily checked using the following theorem, which we omit the proof.

Theorem 3.4 (see [48, Theorem 2.6.5]). If B is a separable Hilbert space, f : X → B is measurable, and∫
X ∥f∥B dν <∞, then f is Bochner integrable.

Recall that our working space is a compact domain X with a continuous kernel kX so that the

corresponding RKHS HX is always separable. This is a consequence of the famous Mercer’s theorem [74]

that explicitly describes a countable orthonormal basis of HX by eigenfunctions of a corresponding kernel

integral operator. Then, since the function z 7→ kX (·, z) ∈ HX is continuous and
∫
X ∥kX (·, z)∥HX dP(z) =∫

X

√
kX (z, z) dP(z) <∞ is integrable for all probability measures P ∈ P(X ), the definition of µP using a

Bochner integral in (3.3) is well-defined, justifying a notation µP = EX∼P[kX (·, X)] ∈ HX . This definition

also gives an interpretation that µP is indeed a mean of the feature embedding of the random variable

X ∈ X with the distribution P. This perspective will be further clarified in the next subsection.

We end this subsection with presenting a useful and intuitive result on linear transformation of

Bochner integrable functions. Since the B-valued Bochner integral is essentially an infinite linear combi-

nation of elements in B, continuous linear transformations will be compatible with the integrations:
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Theorem 3.5 ([48, Theorem 3.1.7]). Let B1,B2 be Banach spaces and let f : X → B1 be a Bochner

integrable function. If L : B1 → B2 is a bounded linear transformation of Banach spaces, then Lf is also

Bochner integrable and

L

(∫
X
f dν

)
=

∫
X
Lf dν.

Proof. Letting a sequence {fk} of simple functions whose integration converges to the Bochner integral∫
X f dν, it is straightforward to check the equality based on Definition 3.3.

3.2.2 Random Elements in a Hilbert Space and the Central Limit Theorem

Once we have a random variable X ∈ X from a probability space (Ω,F , P ), we may consider passing

X through the RKHS feature map ϕ : X → HX defined by a kernel kX on X . As the composition

kX (X, ·) = ϕ ◦X : Ω → HX is Borel measurable, such a random function kX (X, ·) can be viewed as a

Hilbert space-valued random variable. It is then natural to expect that we may generalize the notion and

related theories of random variables to those defined on Hilbert spaces. We give a simple but essential

generalization and its large sample theory as follows.

Definition 3.6. Let H be a Hilbert space equipped with the Borel σ-field generated by its inner product.

Given a probability space (Ω,F , P ), a random element χ on H is a measurable map χ : Ω → H. We

simply denote this as χ ∈ H.

Clearly, the RKHS embedding kX (X, ·) of a random variable X is a random element of HX , which

will be our central interest. If χ is a random element of a separable Hilbert space, then Theorem 3.4

suggests to define their integration.

Definition 3.7. If H is separable and E[∥χ∥H] < ∞, the mean element of χ is defined as the Bochner

integral

E[χ] :=
∫
Ω

χdP ∈ H.

Note that Theorem 3.5 implies that we may interchange the expectation and the inner product: for

all f ∈ H,

⟨E[χ], f⟩H = E [⟨χ, f⟩H] . (3.5)

This also indicates that E[χ] is the Riesz representer of the bounded linear functional f 7→ E [⟨χ, f⟩H]

on H, whose boundedness is established by the condition E[∥χ∥H] <∞.

In case χ = kX (X, ·) ∈ HX , where X is a random variable with its distribution PX , we have

E[χ] = E[kX (X, ·)] =
∫
Ω

kX (X, ·) dP =

∫
X
k(x, ·) dPX(x)

by the change of variables formula. Therefore,

E[χ] = EX∼PX [kX (X, ·)] = µPX ,

that is, the mean element of kX (X, ·) coincides with the mean embedding of PX .

It is known that elementary large sample theories, such as the central limit theorem (CLT), also

hold for random elements of a Hilbert space. We state the CLT below, whose proof is mostly similar to

the case of univariate random variables.
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Theorem 3.8 (Central Limit Theorem [48, Theorem 7.7.6]). Let χ1, χ2, . . . , be independent and iden-

tically distributed random elements of a separable Hilbert space H. If E∥χ1∥H = 0 and E∥χ1∥2H < ∞,

then

lim
n→∞

1√
n

n∑
i=1

χi
d−→ G,

where G is a zero mean Gaussian random element in H with its covariance operator E[χ1 ⊗ χ1]. The

superscript d over the arrow indicates convergence in distribution.

Here, the Gaussian random element G above satisfies that (⟨G, f⟩H, ⟨G, g⟩H) is a bivariate normal

random vector with the cross-covariance equal to E[⟨χ1, f⟩H⟨χ1, g⟩H]. One meaningful consequence of

this CLT is that we have the weak law of large numbers with the order Op(1/
√
n). Here the symbol

Xn = Op(Yn) represents that Xn/Yn is bounded in probability.

3.3 Cross-Covariance Operators and Hilbert-Schmidt Opera-

tors

Having equipped with the functional machinery shown in the previous section, we introduce another

essential ingredient of our theory, the cross-covariance operator of RKHSs. While the kernel mean

embedding represents embedding probability distributions into RKHS, the cross-covariance operator

represents independence structure between two probability distributions. Given that RKHSs are rich

enough, such an operator is surprisingly capable of discriminating the independence of two distributions.

As we describe below, the construction and the properties of the cross-covariance operator will show

notable similarity to the covariance matrix of the Euclidean joint random vectors.

Let (X,Y ) ∈ X × Y be a random vector with the joint distribution PXY , and denote PX and

PY by their marginal distributions. Using the kernel feature embeddings ϕ(x) = kX (x, ·) ∈ HX and

ψ(y) = kY(y, ·) ∈ HY , we can embed the marginal distributions PX and PY into the RKHSs HX and HY ,

respectively, which are essentially means of the embedded random variables of RKHSs. We specifically

denote such kernel mean embeddings by mX = EX [kX (X, ·)] = EX [ϕ(X)] and mY = EY [kY(Y, ·)] =
EY [ψ(Y )]. Note that such mean elements indeed generate associated means, meaning that, for all

f ∈ HX and g ∈ HY ,

⟨f,mX⟩HX = E[f(X)], and ⟨g,mY ⟩HY = E[g(Y )].

Going further, we can also generate the covariance of evaluations of X and Y using a linear operator

of RKHSs. The cross-covariance operator of (X,Y ), ΣY X : HX → HY , is defined by the following

adjoint relations; for all f ∈ HX and g ∈ HY ,

⟨g,ΣY Xf⟩HY = EX,Y [(f(X)− EX [f(X)]) (g(Y )− EY [g(Y )])]

= Cov [f(X), g(Y )] .
(3.6)

That is, the operator ΣY X generates every possible cross-covariance of evaluations of X and Y via the

member of RKHSs. The Riesz representation theorem uniquely defines a linear operator satisfying the

relation (3.6) for all f and g. If Y = X, then we say ΣXX : HX → HX the covariance operator. Note

that Σ∗
Y X = ΣXY , where the ∗ indicates the adjoint of the operator, and thus the covariance operator

ΣXX is self-adjoint. Using the reproducing property, one can rewrite the above relation as

⟨g,ΣY Xf⟩HY = EX,Y [⟨f, ϕ(X)−mX⟩HX ⟨g, ψ(Y )−mY ⟩HY ] . (3.7)
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Table 3.1: Similarity between the Euclidean and RKHS notions in computations arose in equations

(3.7) and (3.8).

Euclidean notions RKHS notions

X, Y : random variables ϕ(X), ψ(Y ): random elements of RKHS

E[X], E[Y ]: means mX , mY : mean elements

CY X : cross-covariance matrix ΣY X : cross-covariance operator

α ∈ Rm: vector as a dual function ⟨α, ·⟩Rm f ∈ HX : RKHS function

αTX = ⟨α,X⟩Rm : dual evaluation of α ∈ Rm ⟨f, ϕ(X)⟩HX = f(X): evaluation of f ∈ HX .

It is worthwhile to notice that the equation (3.7) parallels the corresponding relation of the Euclidean

cross-covariance matrix. If X and Y were the subsets of Rm and Rk, respectively, and if we denote the

cross-covariance matrix of Y and X by CY X , then for all α ∈ Rm and β ∈ Rk, we have

βTCY Xα = EX,Y
[
βT (Y − E[Y ])(X − E[X])Tα

]
= Cov[αTX,βTY ]. (3.8)

Here, the computations in the equations (3.7) and (3.8) exhibit a vast similarity and we summarize those

correspondences in Table 3.1.

We may also explicitly represent the evaluations of the operator ΣY X . If we put g = ψ(y) = kY(y, ·)
in (3.6), we get the evaluation of ΣY Xf at y ∈ Y:

(ΣY Xf)(y) = ⟨ψ(y),ΣY Xf⟩HY = EX,Y [(f(X)− EX [f(X)])(ψ(y)(Y )− EY [ψ(y)(Y )])]

= EX,Y [(f(X)− EX [f(X)])(kY(y, Y )− EY [kY(y, Y )])]

= Cov[f(X), kY(y, Y )].

(3.9)

The covariance operator ΣY X is particularly useful when the RKHSs HX and HY are rich enough

so that it can generate more possible covariances Cov[f(X), g(Y )]. Recall that, in the Euclidean case,

X and Y are uncorrelated if CY X = 0. More can be said for the covariance operators on rich RKHSs,

which is reminiscent of the result that uncorrelated Gaussian random vectors are independent.

Proposition 3.9. If HX + R is dense in L2(PX) and if HY + R is dense in L2(PY ), then

ΣY X = 0 ⇔ X ⊥⊥Y.

Proof. Observe first that, in L2 spaces,

E[f(X)g(Y )] = E[f(X)]E[g(Y )], ∀f ∈ L2(PX),∀g ∈ L2(PY ) ⇔ X ⊥⊥Y

since these L2 spaces contain all the indicator functions 1A, where the A are measurable. Thus, it suffices

to show that if ΣY X = 0, then for any fixed pair of L2 functions f ∈ L2(PX) and g ∈ L2(PY ), we have

Cov[f(X), g(Y )] = 0. Pick sequences of functions {fn + cn}∞n=1 ⊂ HX +R and {gn + dn}∞n=1 ⊂ HY +R
that converge to f and g in L2-norms, respectively. Here, fn ∈ HX and gn ∈ HY , and we can exclude

the constants cn and dn in our argument by considering the variances,

Var[f(X)− fn(X)] → 0, and Var[g(Y )− gn(Y )] → 0.
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Using the RKHS functions fn and gn, we can write

Cov[f(X), g(Y )] = Cov[f(X)− fn(X) + fn(X), g(Y )− gn(Y ) + gn(Y )]

= Cov[f(X)− fn(X), g(Y )− gn(Y )] + Cov[f − fn(X), gn(Y )]

+ Cov[fn(X), g(Y )− gn(Y )] + Cov[fn(X), gn(Y )],

and note that Cov[fn(X), gn(Y )] = ⟨gn,ΣY Xfn⟩HY = 0 since ΣY X = 0. Letting n→ ∞, the right hand

side of the above goes to 0 by the Cauchy-Schwarz ineqaulity, which finishes the proof.

Note that, using an empirical estimate for the covariance operator ΣY X that will be introduced in

Section 3.5, one can construct an independence test for two different random variables, called the Hilbert

Schmidt independence criterion (HSIC) [44]. Here, the key ingredient of the result is that the RKHSs

can estimate all the L2(PX) and L2(PY ) functions up to constants. It is thus natural to ask when the

RKHS are rich enough to achieve such approximations, and we give two relevant definitions on richness

of RKHS, independent of the given random variables X and Y .

Definition 3.10. Given a kernel kX on the compact domain X , we say the kernel kX or the corresponding

RKHS HX is

• universal if HX is a dense subspace of the space C(X ) of continuous functions on X , and

• characteristic if the mean embedding map µ : P(X ) → HX , P 7→ µP is injective.

Since we consider only continuous kernels, the corresponding RKHS consists only of continuous

functions, which verifies the well-definedness of the universal kernels. The characteristic RKHS indicates

it is rich enough to distinguish all the probability measures on X , and it is known that all universal

kernels are characteristic [45]. Many popular kernels used in practice, such as Gaussain and Laplace

kernels, are universal; Table 2.1 provides more examples of kernels on sphere with their universality. For

further information, see Micchelli et al. [75] for extensive characterizations of universal kernels. Finally,

we present a fact that characteristic kernels always satisfy the constraint of the Proposition 3.9.

Proposition 3.11 (see [34, Proposition 5]). Let (HX , kX ) be an RKHS on X . Then

k is characteristic ⇐⇒ HX + R is dense in L2(P) for all P ∈ P(X ).

Characteristic kernels will play an essential role in our theory of nonlinear kernel dimension reduction

in the next sections. Before developing the theory, we present another viewpoint of covariance operators

that will be useful in technical proofs in the following subsection.

3.3.1 Hilbert-Schmidt Operator and Covariance of Random Elements

The cross-covariance operator introduced in this section is in fact a generalized covariance of a

random element on a Hilbert space. Similarly to the kernel mean embedding, the essential properties

of the covariance matrix extend to the covariance element with a greater generality. We briefly present

such a general construction and two associated measures of the covariance operator.

Recall that the cross-covariance matrix CY X of random vectors X ∈ Rm and Y ∈ Rk, which is

essentially a linear map Rm → Rk, can be viewed as an element of Rk ⊗ Rm = Rk×m. We can proceed

a parallel construction for two random elements on Hilbert spaces, while we need a well-defined notion

of tensor product of Hilbert spaces and their relation to linear operators.
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Let {ei}∞i=1 be a complete orthonormal system (CONS) of H1 and let T : H1 → H2 be a bounded

operator of separable Hilbert spaces. T is called Hilbert-Schmidt if it satisfies
∑∞
i=1 ∥Tei∥H2

< ∞, and

it is well known that this sum is independent of the choice of CONS of H1. We denote the class of

Hilbert-Schmidt operators by B(H1,H2)HS . The space of Hilbert-Schmidt operators is endowed with an

inner product ⟨T1, T2⟩HS :=
∑∞
i=1⟨T1ei, T2ei⟩H2

for all T1, T2 ∈ B(H1,H2)HS , making it also a Hilbert

space with the Hilbert-Schmidt norm, ∥T∥2HS :=
∑∞
i=1 ∥Tei∥2H2

. If H2 = H1 so that T : H1 → H1 is a

bounded operator, we define another notion of trace, given by

Tr(T ) :=

∞∑
i=1

⟨Tei, ei⟩H1
,

which is again independent of the choice of CONS {ei}. If T ∈ B(H1,H2)HS , it is clear that Tr(T
∗T ) =

∥T∥2HS .
On the other hand, one can define a tensor product H2⊗H1 of Hilbert spaces that is a completion of

the space of finite linear combinations of simple tensors g⊗f , f ∈ H1 and g ∈ H2, endowed with the inner

product ⟨g1⊗f1, g2⊗f2⟩H2⊗H1
= ⟨g1, g2⟩H2

⟨f1, f2⟩H1
that linearly extends. A simple tensor g⊗f is also

called as rank-1 tensor, which defines a linear operator g⊗ f : H1 → H2 that maps h 7→ g⟨f, h⟩H1
∈ H2.

Clearly, ∥g ⊗ f∥HS = ∥g∥H1∥f∥H2 = ∥g ⊗ f∥H2⊗H1 by Parseval’s identity. It is known that such an

association linearly extends to an isomorphism of Hilbert spaces [77]:

H2 ⊗H1 → B(H1,H2)HS ,

∞∑
i=1

gi ⊗ fi 7→

(
h 7→

∞∑
i=1

gi⟨fi, h⟩H1

)
.

Therefore, we identify all the elements of the tensor product space H2⊗H1 as a Hilbert-Schmidt operator

in B(H1,H2)HS .

Using these notions, tensor product and the Hilbert-Schmidt operator on separable Hilbert spaces,

we define the cross-covariance of random elements χ2 ∈ H2 and χ1 ∈ H1 by

Σχ2χ1
:= E [(χ2 − E[χ2])⊗ (χ1 − E[χ1])] ∈ H2 ⊗H1.

This is well-defined as long as the expectation is Bochner integrable, which is readily checked using

Theorem 3.4. Once we have a well-defined Σχ2χ1 , it defines a Hilbert-Schmidt operator from H1 to H2

following the above discussion. The explicit computation can be derived from Theorem 3.5. Since the

expectation and inner products are interchangeable, we can explicitly describe the evaluations of Σχ2χ1

as

• Σχ2χ1
f = E[(χ2 − E[χ2])⟨χ1 − E[χ1], f⟩H1

] for all f ∈ H1, and

• ⟨g,Σχ2χ1
f⟩H2

= E[⟨χ2 − E[χ2], g⟩H2
⟨χ1 − E[χ1], f⟩H1

] for all f ∈ H1 and g ∈ H2.

Coming back to the RKHS setting, H1 = HX , H2 = HY , χ1 = kX (X, ·) = ϕ(X), and χ2 = kY(Y, ·) =
ψ(Y ) as before, we see that the latter equality coincides with the equation (3.7). Therefore, the cross-

covariance operator ΣY X defined in (3.6) is the same as the cross-covariance of random elements ψ(Y )

and ϕ(X), which is Hilbert-Schmidt. It immediately follows that

∥ΣY X∥2HS = ∥E[(ψ(Y )−mY )⊗ (ϕ(X)−mX)]∥2HY⊗HX
(3.10)

where mX = E[ϕ(X)] and mY = E[ψ(Y )] are the mean elements. Also, using Parseval’s identity and

Theorem 3.5, we readily have

Tr(ΣXX) = E[∥ϕ(X)−mX∥2HX
].
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3.4 Conditional Covariance Operator and Generalization of Ker-

nel Dimension Reduction

Using the mean and covariance of random elements, we are ready to define the conditional covariance

operator on an RKHS. Although conditional covariance does not generally behave well for arbitrary joint

random vectors, its construction and pleasing properties of the Gaussian random vectors successfully

generalize to the RKHS environment with great generality. Similar to the covariance operator, the

conditional covariance operator determines conditional independence under the richness of RKHSs.

Based on such a powerful property, Fukumizu et al. [32, 34] developed a famous kernel dimension

reduction (KDR) method for supervised, sufficient dimension reduction in Euclidean space. The central

intuition for their method is to find a dimension reduction that minimizes the conditional covariance of

the response variable. The KDR method performs surprisingly well for data with a small sample size,

though it is only developed for seeking orthogonal projections. However, the key intuition behind the

KDR method suggests that it should be clearly generalized to arbitrary forms of dimension reductions

of interest. We will verify that the theory can be greatly generalized without relying on the specific

properties of orthogonal matrices.

Section 3.4.1 begins with reviewing the theory of conditional covariance operator on RKHS and

how its properties correspond to the conditional covariance matrix of Gaussian random vectors. Then,

we generalize the linear KDR theory of Fukumizu et al. [34] to encompass nonlinear projection maps.

The main theoretical result, minimizing the trace of conditional covariance operator approaches suffi-

cient dimension reduction (SDR), will remain valid and can be readily proved using measure-theoretic

languages. As a result, we adequately formulate a generalized KDR algorithm at the population level.

To address the complexity of the parameter choice problem of kernels, we delve into this issue within the

scope of response variables in Section 3.4.2. We will observe that employing a linear kernel for univariate

and continuous response variables can greatly streamline the parameter selection process without signif-

icantly diminishing theoretical efficacy. Finally, we will explore the generalization of the unsupervised

KDR work of Wang et al. [121] in Section 3.4.3 with deeper discussions on the interpretation of their

proposed framework.

3.4.1 Conditional Covariance Operator and Sufficient Dimension Reduction

Consider the scenario where (X,Y ) forms a joint Gaussian random vector. In such cases, the

conditional covariance of Y given X is traditionally defined as CY Y |X = CY Y −CY XC−1
XXCXY , provided

that the covariance matrix CXX is invertible. This invites the notion of similarly defining the conditional

covariance operator. However, one must carefully address the issue of invertibility with the covariance

operator ΣXX , which is not always invertible. To circumvent this, we give an alternative definition of the

conditional covariance operator without operator inversion. This approach utilizes the following result

of Baker [9], which presents a concept akin to correlation defined on RKHS.

Theorem 3.12 (Baker [9, Theorem 1]). There exists a bounded operator VY X : HX → HY such that

ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX , ∥VY X∥ ≤ 1, and VY X = Pran(ΣY Y )VY XPran(ΣXX), (3.11)

where ∥·∥ is the operator norm, ran(·) is the closure of the range, and PN denotes the projection operator

onto the subspace N of a Hilbert space. Furthermore, the operator VY X is unique up to the relations

(3.11).
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Note that the correlation operator VY X is defined without inverting the marginal covariances ΣXX

and ΣY Y . In case ΣXX is invertible, the relation ΣY XΣ−1
XXΣXY = Σ

1/2
Y Y VY XVXY Σ

1/2
XX holds. Given

the constant presence of the correlation operator, we can define the conditional covariance operator by

leveraging this concept.

Definition 3.13. The conditional covariance operator ΣY Y |X : HY → HY of Y given X is defined by

ΣY Y |X = ΣY Y − Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y .

Remark. An alternative to employing the correlation operator for defining the conditional covariance

operator is using the Moore-Penrose inverse Σ†
XX of ΣXX , which is defined in Hsing and Eubank [48,

Section 3.5]. Because the Moore-Penrose inverse is defined only on ran(ΣXX), we need an assumption

ran(ΣXY ) ⊆ ran(ΣXX) that assures the well-definedness of the operation Σ†
XXΣXY . With this assump-

tion, it is apparent that the equality Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y = ΣY XΣ†

XXΣXY holds, and thus we could have

defined

ΣY Y |X = ΣY Y − ΣY XΣ†
XXΣXY ,

which appears more intuitive. This approach is adopted in, for example, Li and Song [57]. However,

the precondition ran(ΣXY ) ⊆ ran(ΣXX) may not hold in general, even though it is regarded as a mild

assumption because we always have ran(ΣXY ) ⊆ ran(ΣXX). We follow our more general construction

using correlation operators since one can construct simple examples that easily violate the condition

ran(ΣXY ) ⊆ ran(ΣXX); e.g., see Example 6.8 of Klebanov et al. [51].

We investigate some computational properties of the conditional covariance operator. It is natural

to expect that some computational properties of the Gaussian conditional covariance matrix CY Y |X

may generalize to the operator setting. If (X,Y ) ∈ Rm × Rk are joint Gaussian random variables, the

covariance matrix of the conditional random variable Y |X = x is exactly the conditional covariance

matrix CY Y |X ; that is,

Var(bTY |X) = bTCY Y |Xb, ∀ b ∈ Rk,

where the left hand side is independent of the realizations X = x. To make the equality deterministic,

we may also write

E[Var(bTY |X)] = bTCY Y |Xb, ∀ b ∈ Rk. (3.12)

Also, using the fact that Y −AX, A ∈ Rk×m, is also Gaussian, one can easily derive

min
A∈Rk×m

∥Ỹ −AX̃∥22 = Tr(CY Y |X)

where Ỹ = Y − E[Y ] and X̃ = X − E[X]. Replacing Y with bTY results in

min
a∈Rm

∣∣∣bT Ỹ − aT X̃
∣∣∣2 = bTCY Y |Xb = Var(bTY |X), ∀ b ∈ Rk. (3.13)

The equations (3.13) and (3.12) successfully extends to the similar properties of the conditional covariance

operator ΣY Y |X , equations (3.14) and (3.15), respectively.

Proposition 3.14 ([34, Propositions 2 and 3]). For any g ∈ HY , we have

⟨g,ΣY Y |Xg⟩ = inf
f∈HX

Var(g(Y )− f(X)). (3.14)

If HX + R is dense in L2(PX) (e.g. characteristic), we further have

⟨g,ΣY Y |Xg⟩HY = EX [VarY |X [g(Y )|X]]. (3.15)
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Proof. Define Eg(f) = EX,Y |(g(Y )− EY [g(Y )])− (f(X)− EX [f(X)])|2 = Var(g(Y ) − f(X)). Observe

that

Eg(f) = ⟨g,ΣY Y g⟩HY − 2⟨g,ΣY Xf⟩HY + ⟨f,ΣXXf⟩HX

= ∥Σ1/2
XXf∥

2
HX

− 2⟨VXY Σ1/2
Y Y g,Σ

1/2
XXf⟩HX + ∥Σ1/2

Y Y g∥
2
HY

= ∥Σ1/2
XXf − VXY Σ

1/2
Y Y g∥

2
HX

+ ∥Σ1/2
Y Y g∥

2
HY

− ∥VXY Σ1/2
Y Y g∥

2
HX

= ∥Σ1/2
XXf − VXY Σ

1/2
Y Y g∥

2
HX

+ ⟨g,ΣY Y |Xg⟩HY .

It is thus obvious that inff∈HX Eg(f) ≥ ⟨g,ΣY Y |Xg⟩HY . From the fact that ran(VXY ) ⊆ ran(ΣXX) =

ran(Σ
1/2
XX) (Theorem 3.12), ∃f∗ ∈ HX such that Σ

1/2
XXf

∗ arbitrarily closely approximates VXY Σ
1/2
Y Y g in

HX , which means that

inf
f∈HX

∥Σ1/2
XXf − VXY Σ

1/2
Y Y g∥

2
HX

= 0, proving the equality (3.14).

For the second equality, we rewrite the equality (3.14) as

⟨g,ΣY Y |Xg⟩HY = inf
f∈HX

Var[g(Y )− f(X)]

= inf
f∈HX

{VarX [E[g(Y )− f(X)|X]] + EX [Var[g(Y )− f(X)|X]}

= inf
f∈HX

VarX [E[g(Y )|X]− f(X)] + EX [VarY |X [g(Y )|X]].

Since the regression function φ(·) = E[g(Y )|X = · ] is L2(PX) (∵ E[E[g(Y )|X]2] ≤ E[E[g(Y )2|X]] =

E[g(Y )2] <∞), we can approximate φ given the richness ofHX ; that is, for any ε > 0, there exists f ∈ HX

such that ∥φ−(f+c)∥2L2(PX) ≤ ε for some constant c ∈ R. As Var[φ(X)−f(X)] ≤ ∥φ−(f+c)∥2L2(PX) ≤ ε

we conclude that inff∈HX VarX [E[g(Y )|X]− f(X)] = 0, which completes the proof.

Suppose that X ⊂ Rd is an d-dimensional compact domain of predictors and let Z ⊆ Rm, m ≤ d, be

a target domain of dimension reduction on which we are given another RKHS (HZ , kZ). Let p : X → Z
be any measurable map that indicates a general nonlinear dimension reduction.

We are then ready to present our generalized theory of kernel dimension reduction. The original

KDR theory is stated using the unique structure of orthogonal matrix B ∈ Rd×m, which can embed the

projected variable BTX into the original space as BBTX ∈ X . We avoid the need of this embedding

by stating our theorem in terms of the variable Z. We will also see that the σ-field viewpoint of the

conditional expectation does not require any properties of the dimension reduction map p in contrast

to the original proof of Fukumizu et al. [34], which used the orthogonal complement of the orthogonal

projection matrix B.

Theorem 3.15. Suppose that (HX , kX ) is dense in L2(PX) (e.g., kX is universal), and let Z = p(X),

where p : X → Z is a measurable map. Then,

ΣY Y |Z ⪰ ΣY Y |X ,

where the inequality ⪰ stands for the partial order of self-adjoint operators. If we further assume that

(HZ , kZ) and (HY , kY) are characteristic, then

the equality ΣY Y |Z = ΣY Y |X holds if and only if Y ⊥⊥X |Z.

Remark. In this result, the role of the kernel kX on the original domain X is only to provide a lower

bound of the conditional covariance operator after projection, ΣY Y |Z .
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Proof. Note first that HX is dense in L2(PX) whenever kX is universal since C(X ) is dense in L2(PX).

For g ∈ HY , Proposition 3.14 and the L2-density of HX implies that

⟨g,ΣY Y |Zg⟩HY = inf
h∈HZ

Var(g(Y )− h(Z))

= inf
f∈Hp

X

Var(g(Y )− f(X)) (∵ Z = p(X))

≤ inf
f∈HX

Var(g(Y )− f(X)) = ⟨g,ΣY Y |Xg⟩HY ,

which proves the inequality. Here, the space Hp
X is the pullback of HZ along the map p, which is a

subspace of L2(PX); see (3.23) for its definition. To show the equality case under the characteristicity

of RKHSs, we use another equality of Proposition 3.14:

⟨g, (ΣY Y |Z − ΣY Y |X)g⟩HY = E[Var(g(Y )|Z)]− E[Var(g(Y )|X)].

As the law of total variance implies that

Var(g(Y )|Z) = E[Var(g(Y )|X,Z)|Z] + Var(E[g(Y )|X,Z]|Z),

we have

E[Var(g(Y )|Z)] = E[E[Var(g(Y )|X,Z)|Z]] + E[Var(E[g(Y )|X,Z]|Z)]

= E[Var(g(Y )|X,Z)] + E[Var(E[Y |X,Z]|Z)].

Since the inclusion of σ-fields σ(Z) ⊂ σ(X) holds clearly, we have

ΣY Y |Z = ΣY Y |X ⇐⇒ E[Var(E[g(Y )|X]|Z)] = 0, ∀g ∈ HY

⇐⇒ Var(E[g(Y )|X]|Z) = 0 almost surely, ∀g ∈ HY

⇐⇒ E[g(Y )|X] = E[g(Y )|Z] almost surely, ∀g ∈ HY .

The assumption that HY is characteristic ensures that for all measurable set A ⊂ Y, the indicator

function 1A is approximated by HY -functions up to a constant; i.e.,

E[g(Y )|X] = E[g(Y )|Z] a.s., ∀g ∈ HY ⇐⇒ PY |X = PY |Z ,

where the last equality is equivalent to the SDR Y ⊥⊥X |Z.

Suppose that we are given a family F of measurable dimension reduction maps p from X to Z. The

family F should be problem-specific; for ordinary Euclidean data, Fukumizu et al. [32, 34] took F as

a Stiefel manifold of orthogonal matrices. We will take other families tailored to compositional data in

Chapter 4 and Chapter 5 in which we develop variable selection and dimension reduction algorithms.

Theorem 3.15 indicates that minimizing the conditional covariance operator ΣY Y |p(X) over p ∈ F attacks

SDR. Here, the operator ΣY Y |p(X) coincides with ΣY Y |Z in Theorem 3.15, but this notation clearly

indicates its dependence on the projection map p : X → Z. Applying the trace (Section 3.3.1) to the

operator ΣY Y |p(X) ⪯ ΣY Y , we may describe our objective function for SDR in a computationally easier

form:

argmin
p∈F

Tr(ΣY Y |p(X)). (3.16)

Since ΣY Y |p(X) ⪰ ΣY Y |X and the positive operator of trace zero is zero, the trace equality Tr(ΣY Y |p(X)) =

Tr(ΣY Y |X) also implies SDR. Therefore, the optimization problem (3.16) always achieves SDR if the class

F contains the identity map idX . The empirical estimator to this optimization problem will be given in

Section 3.5, and their large sample consistency will be studied in Section 3.5.
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3.4.2 Kernel Choice and Sufficient Dimension Reduction for Conditional

Mean

To compute the minimization (3.16), we need to decide what kernels we will use on the domain of

projected data Z and the domain of responses Y. As remarked below Theorem 3.15, computation of the

kernel kX on the original domain X is not needed in solving our optimization problem. Since popular

kernels used in practice are defined up to a parametric family, we will encounter a complex parameter

choice problem in solving the problem (3.16). Fortunately, we will see in this subsection that the kernel

choice problem for the labels Y can be significantly simplified.

As shown in Theorem 3.15, we should choose a characteristic kernel kY on the domain Y to target

SDR. We first consider a multi-class response problem on the discrete domain Y = {y(1), . . . , y(k)}.
Gaussian kernel or Laplace kernel can be natural candidates after embedding Y ⊂ R, but simpler kernels

are also possible depending on the type of the labels. The delta kernel,

kY(y, y
′) := δy,y′ =

1 if y = y′

0 otherwise

is universal, since HY = C(Y) = Rk in this case, so our theory applies. The delta kernel is not only

computationally simpler than Gaussian or Laplace kernels, but it also fits our intuition: we often want

to regard different labels as totally dissimilar. It is commonly adopted when researchers consider kernels

on the discrete domain of labels [107, 20, 11]. There are also experimental supports that the delta kernel

is empirically better than Gaussian kernels for the labels; see, for example, Yamada et al. [126].

For continuous responses, we can make a similar simplification in the univariate case by adjusting

our theoretical basis, Theorem 3.15. In case Y ⊂ R, we take the linear kernel kY(y, y′) = yy′ as suggested

by Chen et al. [20]. Note that the linear kernel results in a non-characteristic RKHS HY = R∨, the dual

space of R, so minimizing the conditional covariance ΣY Y |p(X) may not lead to SDR. Nonetheless, the

RKHS HY includes the identity function idY in this case, which gives a satisfactory relaxed result of

dimension reduction. The following result is a slightly corrected form of Corollary 3 of Chen et al. [20].

Proposition 3.16. Let (HX , kX ), p : X → Z, and Z = p(X) as in Theorem 3.15. Suppose that

(HZ , kZ) is characteristic, Y ⊂ R, and we take the linear kernel kY(y, y
′) = yy′. Then the trace equality

Tr(ΣY Y |X) = Tr(ΣY Y |Z) implies E[Y |X] = E[Y |Z] almost surely; that is, knowing Z is sufficient for

predicting Y .

Proof. In the proof of Theorem 3.15, we have seen that

⟨g, (ΣY Y |Z − ΣY Y |X)g⟩HY = E[Var(E[g(Y )|X]|Z)]

given that HZ is characteristic. Since the trace of operators on HY = R∨ is computed only with the

identity function idY , putting g = idY above gives

0 = Tr(ΣY Y |Z − ΣY Y |X) = E[Var(E[Y |X]|Z)],

which implies Var(E[Y |X]|Z) = 0 a.s., so E[Y |X] = E[Y |Z] almost surely.

Remark. The equality E[Y |X] = E[Y |p(X)] is also known as sufficient dimension reduction for condi-

tional mean, studied in Cook and Li [22]. If we assume that the conditional mean E[Y |X] completely

determines the conditional distribution PY |X ; i.e., Y ⊥⊥X |E[Y |X], then the equality E[Y |X] = E[Y |p(X)]

suffices to guarantee Y ⊥⊥X | p(X). This assumption is common in the statistics literature, for instance,

the additive error models Y = E[Y |X] + ε with X ⊥⊥ ε satisfies the assumption.
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Another advantage of the linear kernel on Y ⊂ R is that we can understand our trace objective

Tr(ΣY Y |p(X)) as a form of kernel ridge regression (KRR) with an intercept. This is done by adding

constants to the RKHS HZ as follows

Corollary 3.17 (Corollary 4 of Chen et al. [20]). We have

Tr(ΣY Y |Z) = inf
f∈HZ+R

E[(Y − f(Z))2]. (3.17)

Proof. Recall that Tr(ΣY Y |Z) = inff∈HZ Var(Y − f(Z))2. It is straightforward to check that this equals

to the above least squares error.

Although the right hand side of (3.17) is not exactly the form of the kernel ridge regression, we will

see in Section 3.5 that the Tikhonov-type regularization in our empirical objective of Tr(ΣY Y |Z) plays a

similar role as the regularization term in the KRR.

3.4.3 Unsupervised Generalized Kernel Dimension Reduction

If no labels are available in the data, we encounter an unsupervised problem. In such situations, we

can identify the label with the input data itself, setting Y = X and Y = X. To continue the powerful

framework of sufficient dimension reduction, Wang et al. [121] introduced the following conditional

independence relation as an objective for unsupervised dimension reduction:

X ⊥⊥ X̃ | p(X), p ∈ F . (3.18)

Here, p represents a measurable map for dimension reduction, and X̃ is an i.i.d. random variable with

the same distribution PX as X. Letting Z = p(X), the conditional independence (3.18) indicates that

the σ-field σ(X) is contained in the completion of σ(Z), denoted σ(Z), with the completion being relative

to the ambient σ-field of the probability space [50, Corollary 8.11]. Thus, the relation (3.18) implies that

all information pertaining to X is almost surely addressed by the information in Z = p(X). Given the

clear inclusion of σ(Z) ⊆ σ(X), we may write the unsupervised SDR relation as simply σ(Z) = σ(X).

Consequently, we could equivalently interpret (3.18) as

E[Y |X] = E[Y |p(X)] almost surely

for all integrable random variables Y .

Applying Theorem 3.15, we similarly formulate the unsupervised dimension reduction problem over

a class F as

argmin
p∈F

Tr(ΣXX|p(X)),

whose empirical estimate will be given in Section 3.5 as

argmin
p∈F

Tr(GX(Gp(X) + nεnIn)
−1).

Here, GX and Gp(X) are the centered kernel Gram matrices of data x1, . . . , xn and projections p(x1), . . . ,

p(xn), respectively. Wang et al. [121] also argue that minimizing this empirical objective is akin to

maximizing the HSIC[44]-based objective, expressed as Tr(GXGp(X)) over p ∈ F . This approach is noted

for being more computationally efficient than the SDR-based approach, and the authors claim that their

experimental results of these two approaches are also similar. However, their theoretical validation for

such equivalence is confined to uniformly distributed data on the sphere, a hardly encountered case in
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practice. Furthermore, a recent result of Liu and Ruan [64, Proposition 2] shows that the maximizer of

the HSIC-based objective cannot be theoretically guaranteed to achieve informative dimension reduction,

as they construct counterexamples in case F is a class of variable importance weights. Specifically, it

might overlook a crucial signal variable, an issue that does not arise in the SDR-based objective, which

has a statistical guarantee as will be discussed in Section 3.6. Consequently, the suggested equivalence

of [121] fails in general circumstances. Thus, we primarily focus on our generalized SDR-based objective

in this thesis.

3.5 Computing Empirical Estimates of Dimension Reduction

We now give an empirical estimate for our trace object, Tr(ΣY Y |p(X)), where p : X → Z is an

arbitrary measurable dimension reduction map. The natural empirical estimates are generated from the

embedded empirical probability measures on RKHSs because the covariance operators are described in

terms of expectations on RKHSs. To enable a stable and intuitive computation, we will apply a Tikhonov

regularization to the component Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y = ΣY XΣ−1

XXΣXY and show how the regularization

(ΣXX + εI)−1 acts similarly to the penalization in kernel ridge regression. Then, assuming F is a

parametric family of functions that is a compact metric space, we will finally be able to solve the

optimization problems in Chapters 4 and 5. Note that F was taken as a Stiefel manifold of orthogonal

matrices in Fukumizu et al. [34], and we generalize this to obtain an interpretable SDR of compositional

data.

Let (x1, y1), . . . , (xn, yn) ∈ X × Y be sampled i.i.d. from the joint distribution of (X,Y ) ∈ X × Y.

Let ϕi = kX (xi, ·) ∈ HX and ψi = kY(yi, ·) ∈ HY be embedded functions of data in RKHSs. Recall that

the cross-covariance operator ΣXY were defined as

ΣY X = E[(ψ(Y )−mY )⊗ (ϕ(X)−mX)] ∈ HY ⊗HX ,

where ϕ(X) = kX (X, ·) ∈ HX and ψ(Y ) = kY(Y, ·) ∈ HY are random elements. Recall also that

mX = E[ϕ(X)] and mY = E[ψ(Y )], so their natural empirical estimates should be m̂X = 1
n

∑n
i=1 ϕi and

m̂Y = 1
n

∑n
i=1 ψi. Thus we may define a natural empirical estimate for ΣY X via the sample average,

Σ̂
(n)
Y X :=

1

n

n∑
i=1

(ψi − m̂Y )⊗ (ϕi − m̂X),

which is called the empirical cross-covariance operator. It is immediately seen that the empirical estimate

Σ̂Y X generates empirical covarinaces:

⟨g, Σ̂(n)
Y Xf⟩HY =

1

n

n∑
i=1

g(yi)f(xi)−

(
1

n

n∑
i=1

g(yi)

)(
1

n

n∑
i=1

f(xi)

)
,

for all f ∈ HX and g ∈ HY .

Using the empirical estimate Σ̂
(n)
Y X for ΣY X , we may define the empirical version of conditional co-

variance operator ΣY Y |X = ΣY Y −Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y . Recall that ΣY XΣ−1

XXΣXY = Σ
1/2
Y Y VY XVXY Σ

1/2
XX

if the covariance operator ΣXX is invertible, as discussed in Section 3.4. By adopting the Tikhonov-type

regularization to invert the covariance ΣXX , we define the empirical conditional covariance operator as

Σ̂
(n)
Y Y |X := Σ̂

(n)
Y Y − Σ̂

(n)
Y X(Σ̂

(n)
XX + εnI)

−1Σ̂
(n)
XY , (3.19)

where εn > 0, εn → 0 as the number of samples n goes to infinity, and I : HX → HX is the identity

operator. Note that the parameter εn works similarly as a regularization parameter of kernel ridge
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regression, which we will cover at the end of this section. For brevity, we will drop the superscript (n)

for all emipricial operators if there is no confusion.

Although the empirical covariance operators are still defined on the (possibly) infinite-dimensional

Hilbert spaces, their numerical measures, such as the Hilbert-Schmidt norm or the trace, can be expressed

in finite terms. To simplify the notations, we denote the centered data embeddings by ψ̃i := ψi−m̂Y ∈ HY

and ϕ̃i := ϕi − m̂X ∈ HX , so the operator Σ̂Y X is written in short as Σ̂Y X = 1
n

∑n
k=1 ψ̃k ⊗ ϕ̃k.

The reproducing property shows ϕ̃i(xk) = kX (xi, xk) − 1
n

∑n
l=1 kX (xl, xk) and ψ̃j(yk) = kY(yj , yk) −

1
n

∑n
l=1 kY(yl, yk), and similarly we may compute the inner products as, for all i, j ∈ [n] := {1, . . . , n},

⟨ϕ̃i, ϕ̃j⟩HX = kX (xi, xj)−
1

n

n∑
k=1

kX (xi, xk)−
1

n

n∑
l=1

kX (xl, xj)

+
1

n2

n∑
k=1

n∑
l=1

kX (xl, xk),

and the similar result holds for ⟨ψ̃i, ψ̃j⟩HY . This implies that, by denoting KX =
(
kX (xi, xj)

)
the kernel

Gram matrix and H = I− 1
n11

T the centering matrix, where 1 = (1, . . . , 1) ∈ Rn, the above computation

is described as ⟨ϕ̃i, ϕ̃j⟩HX = (HKXH)i,j . The matrix HKXH is often called as a centered Gram matrix,

and written in short as GX . If we define GY = HKYH similarly, we have

⟨ϕ̃i, ϕ̃j⟩HX = (GX)i,j and ⟨ψ̃i, ψ̃j⟩HY = (GY )i,j .

We can then evaluate Σ̂Y X at the sample embeddings,

Σ̂Y X ϕ̃i =
1

n

n∑
k=1

(
ψ̃k ⊗ ϕ̃k

)
ϕ̃i

=
1

n

n∑
k=1

⟨ϕ̃k, ϕ̃i⟩HX ψ̃k

=
1

n

n∑
k=1

(GX)k,iψ̃k.

Therefore, letting the spanning systems BX = {ϕ̃i}ni=1 and BY = {ψ̃i}ni=1 of subspaces of HX and HY ,

respectively, the empirical cross-covariance operator Σ̂Y X from span(BX) to span(BY ) is represented by

a centered Gram matrix GX ,

BY[Σ̂Y X ]BX =
1

n
GX .

Here, the notation BY[Σ̂Y X ]BX means that its jth column represents the vector [Σ̂Y X ψ̃j ]BY , where a vector

[φ]BY , for φ ∈ span(BY ), satisfies
∑n
i=1([φ]BY )iψ̃i = φ. Note that these vector representations are not

unique since the spanning systems BX and BY are linearly dependent, and we are particularly interested

in the representations related to the centered Gram matrices. One can obtain similar representations of

Σ̂XX and Σ̂XY , and furthermore it is easy to compute that

BX [(Σ̂XX + εnI)
−1]BX = n(GX + nεnIn)

−1.

These computational results are summarized in the following proposition:

Proposition 3.18. We have the following matrix representations

BX [Σ̂XX ]BX =
1

n
GX , BY[Σ̂Y Y ]BY =

1

n
GY

BY[Σ̂Y X ]BX =
1

n
GX , BX [(Σ̂XX + εnI)

−1]BX = n(GX + nεnIn)
−1.
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Therefore, the empirical conditional covariance operator ΣY Y |X has the following matrix represen-

tation

BY [Σ̂Y Y |X ]BY =
1

n

{
GY −GX(GX + nεnIn)

−1GY
}

= εn(GX + nεnIn)
−1GY .

Computing the trace of the empirical operator Σ̂Y Y |X based on this matrix representation requires extra

verification because of the linear dependency of the spanning systems BX = {ϕ̃i}ni=1 and BY = {ψ̃i}ni=1.

Recall that the trace of a positive self-adjoint operator A on a Hilbert space H is defined by

Tr(A) =

∞∑
i=1

⟨hi, Ahi⟩H,

where {hi}∞i=1 is a CONS of H. Since the trace is independent of the choice of CONS, it immediately

follows that Tr(A) is computed inside any closed subspace of H that contains ran(A) by taking a CONS

of such a subspace. Since we have shown above that ran(Σ̂Y Y |X) ⊆ span(BY ), we have Tr(Σ̂Y Y |X) =

Tr(Σ̂Y Y |X
∣∣
span(BY )

). Let E = {e1, . . . , ek} be an orthonormal basis for the subspace span(BY ) ⊂ HY so

that

Tr(Σ̂Y Y |X) =

k∑
i=1

⟨ei, Σ̂Y Y |Xei⟩HY = Tr(E [Σ̂Y Y |X ]E).

Fixing a matrix representation BY [IY ]E of the identity operator IY : HY → HY , a simple linear algebra

shows that

Tr(BY [Σ̂Y Y |X ]BY ) = Tr(BY [IY ]E · E [Σ̂Y Y |X ]E · E [IY ]BY )

= Tr(E [Σ̂Y Y |X ]E · E [IY ]BY · BY [IY ]E)

= Tr(E [Σ̂Y Y |X ]E · E [IY ]E)

= Tr(E [Σ̂Y Y |X ]E)

since E [IY ]E is uniquely determined as the identity matrix Ik. Therefore, we conclude that our regularized

empirical estimate is given by

Tr(Σ̂Y Y |X) = εnTr((GX + nεnIn)
−1GY ). (3.20)

By replacing X with the projected variable p(X), p ∈ F , we propose to attack SDR by solving the

following empirical problem:

argmin
p∈F

Tr(Σ̂Y Y |p(X)) = argmin
p∈F

Tr((Gp(X) + nεnIn)
−1GY ). (3.21)

Here, the multiplier εn is removed in the right hand side because it is constant when n is fixed. We

will discuss how to solve this optimization problem in different tasks in Chapter 4 and Chapter 5. We

conclude this section with another interesting interpretation of Tr(Σ̂Y Y |X), though we will not use it in

empirical computations.

Remark. Computing the trace of the empirical operator Σ̂Y Y |X : HY → HY using a CONS of HY

directly exhibits an analogy to kernel ridge regression (KRR). Since the RKHS HY we will use is often

finite dimensional and very simple as discussed in Section 3.4.2, this viewpoint that we describe below

may provide a correct intuition for practical applications.
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For any function g ∈ HY , we first compute that

⟨g, Σ̂Y Y |Xg⟩HY = inf
f∈HX

1

n

n∑
i=1

[(
g(yi)−

1

n

n∑
j=1

g(yj)

)
−
(
f(xi)−

1

n

n∑
j=1

f(xj)

)]2
+ εn∥f∥2HX

.

This can be proved similarly to Proposition 3.14. Letting {gi} be a CONS of HY , the trace of Σ̂Y Y |X is

described by the sum of the right hand sides above, where g is replaced by the gi’s. In case Y ⊂ R with

the linear kernel, as discussed in Section 3.4.2, we obtain a simplified form

Tr[Σ̂Y Y |X ] = inf
f∈HX

1

n

n∑
i=1

[
yi −

(
f(xi)−

1

n

n∑
j=1

f(xj)

)]2
+ εn∥f∥2HX

by assuming that the yi are centered. This is similar to the loss function of KRR with the regularization

parameter εn, and we may write the optimization problem (3.21) as

argmin
p∈F

Tr(Σ̂Y Y |p(X)) = argmin
p∈F

inf
f∈Hp

X

1

n

n∑
i=1

[
yi −

(
f(xi)−

1

n

n∑
j=1

f(xj)

)]2
+ εn∥f∥2Hp

X
,

where Hp
X is the pullback of the RKHS HZ along the map p : X → Z as defined in (3.23). Therefore,

roughly speaking, our empirical optimization problem (3.21) can be seen as finding an optimal projection

p that results in the lowest KRR-like loss, in case Y ⊂ R and we use a linear kernel.

3.6 Theoretical Properties of the Dimension Reduction Estima-

tor

This section is dedicated to stating and proving the consistency of the empirical estimator (3.21) of

dimension reduction. An empirical solution p̂(n) of (3.21), computed from n samples, will be shown to

converge to a population minimizer p of (3.16) under a decay condition on εn, where the convergence is

stated in terms of a metric defined on the family F . We will prove that most results stated in terms of

orthogonal projection matrices in Fukumizu et al. [34] successfully extend to our generalized version of

kernel dimension reduction. Furthermore, we will clarify some of the underpinning assumptions of the

original theory and show that one of their assumptions is redundant.

Section 3.6.1 will present essential results with the underlying assumptions, showing that our gen-

eralized method requires few constraints and applies to almost all situations in practice. We will show

the intuitive compatibility result of covariance operators and the pullback operation in Section 3.6.2.

Finally, we will give the main proof of the results in Section 3.6.3.

3.6.1 Large Sample Convergence

Recall that our domains X and Y are compact topological spaces, with X being a subset of Rd.
We also assume that Y can be topologically embedded in an Euclidean space. The compact domain

Z ⊂ Rm, m ≤ d, is a target domain of dimension reduction on which a characteristic RKHS (HZ , kZ)

is defined. We build our theory on the class F , which consists of measurable maps p : X → Z that will

be interpretable in practical applications. We assume F to be equipped with a metric ρ, making it a

compact metric space. To ensure that any approximation p̂ ∈ F of a function p ∈ F indeed approximates

dimension reductions of data, i.e., p̂(x) is close to p(x) for every x ∈ X , we naturally impose the following

assumption:
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Assumption 3.1. For each x ∈ X , the evaluation functional at x, p 7→ p(x) is continuous on F .

Note that the classes F that meet Assumption 3.1 encompass the Stiefel manifolds with their geodesic

distance. This assumption guarantees that our empirical solution set

argmin
p∈F

Tr((Gp(X) + nεnIn)
−1GY )

is nonempty, since F is compact and kZ is continuous on Z.

To fulfill the technical requirements of our proof of the consistency result to hold, we make the

following additional weak assumptions regarding the kernel kZ , the class F , and the data distribution:

Assumption 3.2. There exists a measurable function φ : X → R satisfying E[φ(X)2] < ∞ and the

Lipschitz condition

∥kZ(p1(x), ·)− kZ(p2(x), ·)∥HZ
≤ φ(x) ρ(p1, p2)

holds for all x ∈ X and p1, p2 ∈ F .

Assumption 3.3. For each y ∈ Y, the conditional probability density function fX|Y (x|y) of X|Y = y

exists, and it is continuous in x, bounded in y, and measurable in y.

Assumption 3.2 is a version of the assumption (A-3) of Fukumizu et al. [32] for our broader setup

and will play a crucial role in establishing the uniform convergence of empirical estimates. A typical

scenario where this assumption holds is when kZ is an l2-radial kernel, i.e., kZ(z1, z2) = h(∥z1 − z2∥2)
for some h : R → R, with the property that h is Lipschitz continuous. This scenario includes the

popular Gaussian kernel and the rational quadratic kernel. Letting C > 0 a Lipschitz constant such that

|h(s)− h(t)| ≤ C|s− t|, ∀s, t ∈ R, we have

∥kZ(p1(x), ·)− kZ(p2(x), ·)∥2HZ
= 2h(0)− 2h(∥p1(x)− p2(x)∥2)

≤ 2C∥p1(x)− p2(x)∥2.

If there is a function φ on X such that

∥p1(x)− p2(x)∥ ≤ φ(x)ρ(p1, p2),

meaning that the evaluation at x is also Lipschitz continuous on F with the constant φ(x), we obtain

a similar form to Assumption 3.2 up to a constant multiplication. In many instances, including cases

involving the Stiefel manifold and our choice in Chapter 5, the family F of dimension reductions will

have bounded φ(x) on the compact domain X , thereby achieving Assumption 3.2.

Assumption 3.3 refines the assumption (A-1) presented in Fukumizu et al. [34], where the original

assumption was stated as our Lemma 3.19 on continuity. They addressed that such a continuity is

attainable if the conditional probability distribution Y |X = x is continuous in x, where they used the

advantageous properties of orthogonal matrices. However, as pointed out in Ackerman et al. [1], there

are instances where the continuity of a conditional distribution Y |X = x in the conditioning variable

x is violated, especially when the conditioned variable Y is discrete. Therefore, we propose replacing

the somewhat intricate continuity assumption (A-1) of the reference with our more straightforward

Assumption 3.3, along with our accompanying Lemma 3.19. We postpone the proof of this lemma to

Section 3.6.3. Note that whether Y is continuous or discrete, Assumption 3.3 is more apparent and

acceptable than the original argument.
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Lemma 3.19. Given Assumptions 3.1 and 3.3, the function

p 7→ E[E[g(Y )|p(X)]2]

is continuous on F for all g ∈ HY .

It is worth noting that we removed the assumption (A-2) of Fukumizu et al. [34] since it can be

weakened and subsumed to our ground assumption that HZ is characteristic. We will demonstrate this

later in Section 3.6.2 and Section 3.6.3.

Finally, under Assumptions 3.1-3.3, we have the following desirable consistency result even in our

expanded framework.

Theorem 3.20. Suppose that (HZ , kZ) is characteristic, and that the regularization parameter ε in

(3.21) satisfies

εn → 0 and n1/2εn → ∞ as n→ ∞. (3.22)

Let p̂(n) be a member of the nonempty empirical solution set (3.21). Then, the set of optimal population

solutions, argminp∈F Tr(ΣY Y |p(X)), is nonempty. Furthermore, we have the convergence

Tr
(
Σ̂

(n)

Y Y |p̂(n)(X)

)
→ Tr(ΣY Y |p′(X))

in probability, where p′ is a population solution in argminp∈F Tr(ΣY Y |p(X)).

Note that the theorem could be stated directly with the solution set argminp∈F Tr(ΣY Y |p(X)). How-

ever, we avoided describing it that way because it requires additional, unnecessary arguments, particularly

since the set argmin may not necessarily be measurable.

3.6.2 Pulling Back to the Original Domain

Before giving a detailed proof for Theorem 3.20, we make a remark on how we pull back all the

notions defined in terms of the target domain to the original domain X . In fact, Fukumizu et al. [34]

stated all the results using the pullbacked covariance operators and RKHSs, but they did not recognize

that the covariance operators are coherent with pullbacks, made them impose the redundant assumption

(A-2) in Section 4. We elaborate its detail as follows.

We can pull back the RKHS HZ along the map p : X → Z to the space of functions on X via

composition:

Hp
X := {f : X → R | f = g ◦ p for some g ∈ HZ}, (3.23)

called the pullback of HZ along the map p. It is known that the pullback space Hp
X is also an RKHS on

X with the pullback kernel kpX (x, x′) := kZ(p(x), p(x
′)), and is isomorphic to the orthogonal complement

of the vanishing space of p, {g ∈ HZ | g ◦p = 0}⊥ ⊂ HZ [94, Theorem 2.9]. The isomorphism is naturally

given by the restriction of the pullback operator p∗ : HZ → Hp
X , sending g ∈ HZ to g ◦ p ∈ Hp

X .

Let ΣpY X , ΣpXY , and ΣpXX denote the cross-covariance operators with respect to the pullback kernel

kpX , and define ΣpY Y |X similarly. We also define the pullbacked empirical operators Σ̂p∗∗ similarly. It

is natural to expect that these operators defined upon the space Hp
X are coherent with the original

covariance operators depending on HZ , such as ΣY Z and ΣY Y |Z , where Z = p(X). Also, since those

conditional covariance operators are sending HY to HY , we instinctively expect that ΣY Y |Z = ΣpY Y |X .

The following result demonstrates that all these expectations are correct, enabling us to work on the

convenient domain depending on situations.
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Proposition 3.21. The pullback operator p∗ : HZ → Hp
X pulls back the covariance operators coherently,

meaning that the following diagrams are commutative.

Hp
X Hp

X Hp
X Hp

X

HZ HY HZ HY HZ HZ

ΣpYX

ΣpXX

ΣY Z

p∗ p∗

ΣZY

ΣpXY

ΣZZ

p∗ p∗

These commutativities also hold for the empirical operators Σ̂Z∗ and their pullbacks Σ̂pX∗.

Proof. Write ϕ(Z) = kZ(Z, ·) ∈ HZ and ψ(Y ) = kY(Y, ·) ∈ HY as before, and let ϕ̃(Z) = ϕ(Z)−mZ and

ψ̃(Y ) = ψ(Y ) −mY , where the m∗ denote the mean embeddings. Recall that the covariance operator

ΣY Z is written as

ΣY Z = E[ψ̃(Y )⊗ ϕ̃(Z)] ∈ HY ⊗HZ .

Since Z is the image of X under the map p : X → Z, we can explicitly pullback the ϕ(Z) as

p∗ϕ(Z) = kX (p(X), p(·)) = kpX (X, ·) ∈ Hp
X ,

and mZ is pullbacked similarly as

p∗mZ = p∗E[ϕ(Z)] = E[p∗ϕ(Z)] = E[kpX (X, ·)] ∈ Hp
X

by Theorem 3.5 since the pullback operator p∗ is bounded. Therefore, the cross-covariance operator

ΣpY X : Hp
X → HY can be written as

ΣpY X = E[ψ̃(Y )⊗ p∗ϕ̃(Z)] ∈ HY ⊗Hp
X ,

which establishes the commutative equality ΣpY Xp
∗ = ΣY Z . The remaining results, including the com-

mutativity of empirical operators, are proved similarly, and we omit the proof.

One important consequence of the preceding proposition is that, given a positive constant εn > 0,

we have

Σ̂Y Y |p(X) = Σ̂pY Y |X on HY .

We can check this equality by a repeated applications of the commutativity result:

Σ̂pY X(Σ̂pXX + εnI)
−1Σ̂pXY = Σ̂pY X(Σ̂pXX + εnI)

−1p∗Σ̂ZY

= Σ̂pY Xp
∗(Σ̂ZZ + εnI)

−1Σ̂ZY

= Σ̂Y Z(Σ̂ZZ + εnI)
−1Σ̂ZY .

To prove the similar result on the population operators ΣY Y |p(X) and ΣpY Y |X , we have to additionally

pullback the correlation operators VY Z and VZY . The following result is also intuitively clear, but requires

the uniqueness property of the correlation operators.

Proposition 3.22. Let VY Z and V pY X be the correlation operators satisfying

ΣY Z = Σ
1/2
Y Y VY ZΣ

1/2
ZZ and ΣpY X = Σ

1/2
Y Y V

p
Y X(ΣpXX)1/2.

Then, the correlation operators are also coherent with the pullback operator p∗, that is, we have

VY Z = V pY Xp
∗ and V pXY = p∗VZY .
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Proof. We prove the similar commutativity to Proposition 3.21 for the square-root operators Σ
1/2
ZZ and

(ΣpXX)1/2. Note first that ran(ΣZZ) ⊆ (ker p∗)⊥ ∼= Hp
X since, for all h ∈ HZ and l ∈ (ker p∗)⊥, we have

⟨l,ΣZZh⟩HZ = Cov[h(Z), l(p(X))] = 0.

Considering the spectral decomposition with a CONS {ei} ⊂ ran(ΣZZ),

ΣZZ =

∞∑
i=1

λiei ⊗ ei ∈ HZ ⊗HZ ,

we have the following equality from Proposition 3.21:

ΣpXX =

∞∑
i=1

λip
∗(ei)⊗ p∗(ei) ∈ Hp

X ⊗Hp
X . (3.24)

Since the pullback operator behaves as an isometry on (ker p∗)⊥, we conclude that ⟨p∗(ei), p∗(ej)⟩Hp
X
=

δij , meaning that the equality Equation (3.24) is a spectral decomposition of ΣpXX . It is then straightfor-

ward to see that p∗Σ
1/2
ZZ = (ΣpXX)1/2p∗ using the spectral decompositions of the square-root operators.

Based on such a commutativity, we may draw the following diagram

Hp
X ran(ΣpXX)

ran(ΣY Y ) HY ,

HZ ran(ΣZZ)

(ΣpXX)1/2

V pYX

Σ
1/2
Y Y

p∗

Σ
1/2
ZZ

p∗

VY Z

where the square on the left hand side is commutative. The commutativity of the center triangle follows

from the uniqueness of the correlation operator VY Z , described in Theorem 3.12. Therefore, we have the

equality VY Z = p∗V pY X , and the other equality can also be proven in the same way.

Consequently, we have the equality V pY XV
p
XY = VY ZVZY , implying that

ΣY Y |p(X) = ΣpY Y |X as an operator HY → HY . (3.25)

Recall that we stated our theory in terms of the projected random variable Z = p(X), as this allows us to

leverage the fixed RKHS HZ and its characteristic properties. This perspective is particularly beneficial

in proving Lemma 3.30, where we demonstrate that the assumption (A-2) of Fukumizu et al. [34] is not

essential. However, we also notice that in some instances, such as when proving Lemma 3.29, it is more

practical to work within the original domain X when we take computational advantages of L2 spaces.

Regarding L2 spaces, the space L2(PZ) varies as p changes, whereas L2(PX) remains fixed. Hence, it is

worth recognizing the flexibility of our result of this subsection, which enables us to alternate between

these two perspectives based on the requirements of the task at hand. We will continue the related and

detailed discussions in the upcoming subsection, where we prove our main results.

3.6.3 Proof of the Consistency Result

In this section, our approach mostly aligns with the theoretical flow established by Fukumizu et al.

[34]. The uniform convergence of Proposition 3.23 establishes the desired consistency, and the ingredients

for verifying this uniform convergence are similar. We thoroughly analyze the continuity results, which

are essential elements of the uniform convergence, within our broader class F as we no longer have
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powerful properties of orthogonal matrices. Through this process, we will explore how Assumptions 3.1,

3.2, and 3.3 essentially substitute for the roles played by orthogonal matrices in the original theory. This

exploration will enable us to effectively broaden the KDR framework to encompass a more diverse and

interpretable range of dimension reduction functions.

Proposition 3.23. Given the same assumptions as in Theorem 3.20, the trace of the population condi-

tional covariance operator Tr(ΣY Y |p(X)) is continuous on F , and

sup
p∈F

∣∣∣Tr(Σ̂(n)
Y Y |p(X))− Tr(ΣY Y |p(X))

∣∣∣→ 0, as n→ ∞, in probability.

It is straightforward to prove the consistency of our estimator using this uniform convergence.

Proof of Theorem 3.20 given Proposition 3.23. The following proof is a standard theory of M-estimators.

Note that the continuity of Tr(Σ̂
(n)
Y Y |p(X)) under Assumption 3.1 is addressed in Section 3.6.1. Hence,

the solutions sets

argmin
p∈F

Tr(Σ̂
(n)
Y Y |p(X)) and argmin

p∈F
Tr(ΣY Y |p(X))

are nonempty as the class F is compact. Pick minimizers p̂(n) and p′ from each solution set, respectively.

For a positive number ε > 0, there exists a large number N > 0 such that

sup
p∈F

∣∣∣Tr(Σ̂(n)
Y Y |p(X))− Tr(ΣY Y |p(X))

∣∣∣ ≤ εn

for all n ≥ N at least probability 1− εn. Then, using such a uniform convergence twice, we obtain the

following two inequalities:

Tr
(
Σ̂

(n)

Y Y |p̂(n)(X)

)
≤ Tr

(
Σ̂

(n)
Y Y |p′(X)

)
≤ Tr

(
ΣY Y |p′(X)

)
+ εn, and

Tr
(
ΣY Y |p′(X)

)
≤ Tr

(
ΣY Y |p̂(n)(X)

)
≤ Tr

(
Σ̂

(n)

Y Y |p̂(n)(X)

)
+ εn,

with probability ≥ 1− εn. This implies, with the same probability,∣∣∣Tr(Σ̂(n)

Y Y |p̂(n)(X)

)
− Tr

(
ΣY Y |p′(X)

)∣∣∣ ≤ εn

that concludes the proof of the desired consistency.

In what follows we give the proof of Proposition 3.23 through a series of lemmas. The sequence

sup
p∈F

∣∣∣Tr(Σ̂(n)
Y Y |p(X)

)
− Tr(ΣY Y |p(X))

∣∣∣
is decomposed into two parts,

sup
p∈F

∣∣∣Tr(Σ̂(n)
Y Y |p(X)

)
− Tεn(p)

∣∣∣ and sup
p∈F

∣∣Tεn(p)− Tr(ΣY Y |p(X))
∣∣ (3.26)

where Tεn(p) = Tr
(
ΣY Y − ΣY p(X)(Σp(X)p(X) + εnI)

−1Σp(X)Y

)
is the regularized population conditional

covariance, viewed as a function on F . Note that the first part indicates the uniform convergence between

the empirical conditional covariance and the regularized population version, and the second part shows

that the regularized conditional covariance uniformly converges to the actual conditional covariance. We

prove the uniform convergence of the first part using Lemma 3.24 and Lemma 3.25 and then prove the

second part using Lemma 3.28, Lemma 3.29, and Lemma 3.30. For the following, see Section 3.3.1 for

the definition of the Hilbert-Schmidt norm of operators of Hilbert spaces.
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Lemma 3.24 (Fukumizu et al. [34, Lemma 8]). For fixed n and p ∈ F , letting Z = p(X), we have∣∣∣Tr(Σ̂(n)
Y Y |Z

)
− Tr

(
ΣY Y − ΣY Z(ΣZZ + εnI)

−1ΣZY
)∣∣∣

≤ 1

εn

{
(∥Σ̂Y Z∥HS + ∥ΣY Z∥HS)∥Σ̂Y Z − ΣY Z∥HS +Tr(ΣY Y )∥Σ̂ZZ − ΣZZ∥

}
+
∣∣∣Tr(Σ̂Y Y − ΣY Y )

∣∣∣.
See the reference for the proof of this lemma. Since the spectral decomposition of self-adjoint

operators shows that the operator norm is bounded by the Hilbert-Schmidt norm, ∥Σ̂ZZ − ΣZZ∥ ≤
∥Σ̂ZZ−ΣZZ∥HS , it is enough to show the following lemma to guarantee the convergence of the first part

of the uniform convergence. The following proof corrects some minor mistakes in the original proof and

is simpler with our non-pullbacked covariance operators.

Lemma 3.25. Under the Lipschitz condition of Assumption 3.2, we have

sup
p∈F

∥Σ̂Y Z − ΣY Z∥HS , sup
p∈F

∥Σ̂ZZ − ΣZZ∥HS , and
∣∣∣Tr(Σ̂Y Y − ΣY Y )

∣∣∣
are of Op

(
1√
n

)
as n→ ∞, where Z denotes the p-dependent variable p(X).

Proof. Let (X1, Y1), . . . , (Xn, Yn) denote a random i.i.d. sample from the joint distribution of (X,Y ).

Write the centered random elements of HZ and HY as (we slightly change our notation here)

ϕ(p) = kZ(p(X), ·)− E[kZ(p(X), ·)], ψ = kY(Y, ·)− E[kY(Y, ·)],

ϕi(p) = kZ(p(Xi), ·)− E[kZ(p(X), ·)], ψi = kY(Yi, ·)− E[kY(Y, ·)].

Then, ϕ, ϕ1, . . . , ϕn and ψ,ψ1, . . . , ψn are also i.i.d. with zero mean. We can write the objectives using

these new notations as

Tr(Σ̂Y Y − ΣY Y ) =
1

n

n∑
i=1

∥∥∥∥ψi − 1

n

n∑
j=1

ψj

∥∥∥∥2
HY

− E∥ψ∥2HY
=

1

n

n∑
i=1

∥ψi∥2HY
− E∥ψ∥2HY

−

∥∥∥∥∥ 1n
n∑
i=1

ψi

∥∥∥∥∥
2

HY

,

∥Σ̂Y Z − ΣY Z∥HS =

∥∥∥∥∥ 1n
n∑
i=1

(
ψi −

1

n

n∑
j=1

ψj

)
⊗

n∑
i=1

(
ϕi(p)−

1

n

n∑
j=1

ϕj(p)

)
− E[ψ ⊗ ϕ(p)]

∥∥∥∥∥
HY⊗HZ

≤
∥∥∥∥ 1n

n∑
i=1

(ψi ⊗ ϕi(p)− E[ψ ⊗ ϕ(p)])

∥∥∥∥
HY⊗HZ

+

∥∥∥∥ 1n
n∑
i=1

ψi

∥∥∥∥
HY

∥∥∥∥ 1n
n∑
i=1

ϕi(p)

∥∥∥∥
HZ

,

and ∥Σ̂ZZ − ΣZZ∥HS is expressed similarly as ∥Σ̂Y Z − ΣY Z∥HS by replacing ψ → ϕ. For the trace

Tr(Σ̂Y Y − ΣY Y ), we reaily compute that

∣∣∣Tr(Σ̂Y Y − ΣY Y )
∣∣∣ ≤ ∣∣∣∣ 1n

n∑
i=1

∥ψi∥2HY
− E∥ψ∥2HY

∣∣∣∣+
∥∥∥∥∥ 1n

n∑
i=1

ψi

∥∥∥∥∥
2

HY

,

resulting in the order Op
(

1√
n

)
from the central limit theorem (Theorem 3.8).

To prove convergence for the Hilbert-Schmidt norms, we first note that

∥ϕi(p)∥2HZ
= ⟨kZ(p(Xi), ·)− E[kZ(p(X), ·)], kZ(p(Xi), ·)− E[kZ(p(X), ·)]⟩HZ ≤ 4C2,

where C is a large constant such that kZ ≤ C2. Similar computation is possible for ψ; we say ∥ψi∥HY
≤

2C ′. Then, for different projections p1, p2 ∈ F , we have

∥ψi ⊗ ϕi(p1)− ψi ⊗ ϕi(p2)∥HY⊗HZ
= ∥ψi∥HY∥ϕi(p1)− ϕi(p2)∥HZ

≤ 2C ′φ(Xi) d(p1, p2)
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since

∥ϕ(p1)− ϕ(p2)∥HZ
≤ ∥kZ(p1(X), ·)− kZ(p2(X), ·)∥HZ + ∥E[kZ(p1(X), ·)]− E[kZ(p2(X), ·)]∥HZ

= ∥kZ(p1(X), ·)− kZ(p2(X), ·)∥HZ + E[∥kZ(p1(X), ·)− kZ(p2(X), ·)∥HZ ]

≤ 2φ(X) d(p1, p2)

by Assumption 3.2. We also similarly obtain

∥ϕ(p1)⊗ ϕ(p1)− ϕ(p2)⊗ ϕ(p2)∥HZ
≤ {∥ϕ(p1)∥HZ

+ ∥ϕ(p2)∥HZ
}∥ϕ(p1)− ϕ(p2)∥HZ

≤ 4Cφ(X) d(p1, p2).

These observations are all we need to apply Proposition 3.26 that will be described subsequently. As the

requirements (3.27) are fulfilled, the following proposition completes the proof.

Proposition 3.26 (see [34, Proposition 15]). Let H be a Hilbert space. Suppose that X,X1, . . . , Xn are

i.i.d random variables on X , and suppose that F : X × F → H is a Borel measurable map. If

sup
p∈F

∥F (x, p)∥H <∞ for all x ∈ X , and

∥F (x, p1)− F (x, p2)∥H ≤ φ(x) d(p1, p2) for all p1, p2 ∈ F ,
(3.27)

for some φ ∈ L2(PX), then we have the following uniform rate

sup
p∈F

∥∥∥∥∥ 1n
n∑
i=1

(F (Xi, p)− E[F (X, p)]))

∥∥∥∥∥
H

= Op

(
1√
n

)
as n→ ∞.

The proof of this proposition involves some empirical process theory in Hilbert spaces and is given

in the appendix of Fukumizu et al. [34]. We need to fix the Hilbert space we work on to apply this

proposition, so we work on HZ rather than the pullbacked space Hp
X here. From Lemma 3.24 and

Lemma 3.25, we immediately obtain the following rate of uniform convergence:

Corollary 3.27. Under Assumption 3.2 and the condition (3.22) on the regularization parameter εn,

we have

sup
p∈F

∣∣∣Tr(Σ̂(n)
Y Y |p(X)

)
− Tεn(p)

∣∣∣ = Op

(
1

εn
√
n

)
as n→ ∞.

We now prove the uniform convergence on the population level, the second part of (3.26). We begin

with the pointwise convergence of the function Tε(p) for each fixed p ∈ F . Since the variable of interest

is fixed as Z = p(X), the proof of the following lemma is identical to Lemma 11 of Fukumizu et al. [34].

Lemma 3.28 ([34, Lemma 11]). Tε(p) → Tr[ΣY Y |p(X)] as ε→ 0, for each p ∈ F .

We then establish the continuity results to derive uniform convergence. Here, the continuity As-

sumption 3.1 plays a crucial role. It is convenient to work with the pullbacked notions in the following

lemma.

Lemma 3.29. Under Assumption 3.1, Tε(p) is continuous on F if ε > 0.

Proof. It suffices to show that the mapping

p 7→ Tr(ΣY Z(ΣZZ + εI)−1ΣZY ) = Tr(ΣpY X(ΣpXX + εI)−1ΣpXY )
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is continuous, where the equality was studied in Section 3.6.2. Let {gi} be a CONS of HY so that

Tr(ΣpY X(ΣpXX + εI)−1ΣpXY ) =

∞∑
i=1

⟨gi,ΣpY X(ΣpXX + εI)−1ΣpXY gi⟩HY .

The dominated convergence theorem ensures that it suffices to show, for any fixed g ∈ HY , the mapping

p 7→ ⟨g,ΣpY X(ΣpXX + εI)−1ΣpXY g⟩HY

is continuous. As the kernels are bounded, we have the natural inclusions of function spaces IpX : Hp
X →

L2(PX) and IY : HY → L2(PY ). Also, the explicit formula of ΣY X in (3.9) suggests that the covariance

operators are naturally seen as integral operators. For instance, if we define JpY X : L2(PX) → L2(PY ) as

JpY X(f)(y) = Cov[f(p(X)), kY(y, Y )], ∀f ∈ L2(PX),

we have the commutative relation IY ΣpY X = JpY XIpX . We similarly get IpXΣpXX = JpXXIpX , and thus

IpX(ΣpXX + εI)−1 = (JpXX + εI)−1IpX . Using these relations, we have

⟨g,ΣpY X(ΣpXX + εI)−1ΣpXY g⟩HY = Cov
[
g(Y ),

(
(JpXX + εI)−1JpXY

)
(X)

]
and we can solve the continuity problem in L2 spaces with the L2 operator norms.

Letting X ′ ∼ X an i.i.d. variable and for p1, p2 ∈ F , we compute as

∥(Jp1XY − Jp2XY )g∥
2

L2(PY ) = EX′
[
CovX,Y [k

p1
X (X,X ′)− kp2X (X,X ′), g(Y )]2

]
≤ EX′ [VarX [kp1X (X,X ′)− kp2X (X,X ′)] ·Var[g(Y )]]

≤ EX,X′

[
{kZ(p1(X), p1(X

′))− kZ(p2(X), p2(X
′))}2

]
∥g∥2L2(PY ).

By bounded convergence theorem and the continuity of evaluations (Assumption 3.1), the last expec-

tation goes to zero as d(p1, p2) → 0, proving the continuity of p 7→ JpXY . Then, the continuity of

(JpXX + εI)−1 is proved using the continuity of JpXX as∥∥(Jp1XX + εI)−1 − (Jp2XX + εI)−1
∥∥ =

∥∥(Jp1XX + εI)−1(Jp2XX − Jp1XX)(Jp2XX + εI)−1
∥∥

≤ 1

ε2
∥Jp2XX − Jp1XX∥,

which finishes the proof.

The final ingredient of the desired uniform convergence is that the population objective Tr(ΣY Y |p(X))

is continuous on F . Working on HZ of the target domain, we can perform much simpler proof than that

in the reference. As mentioned in Section 3.6.1, we need the condition that HZ is characteristic and

Lemma 3.19.

Lemma 3.30. Under Assumptions 3.1 and 3.3, Tr
(
ΣY Y |p(X)

)
is a continuous function on F , provided

that the RKHS HZ is characteristic.

Proof. By the same argument as the preceding lemma, it is enough to show that the mapping p 7→
⟨g,ΣY Y |p(X)g⟩HY is continuous on F , for any g ∈ HY . Since HZ is characteristic, Proposition 3.14

implies that

⟨g,ΣY Y |p(X)g⟩HY = E[Var[g(Y )|p(X)]]

= E[g(Y )2]− E[E[g(Y )|p(X)]].

Lemma 3.19 therefore concludes the proof, which is a consequence of Assumptions 3.1 and 3.3.
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We give our proof of Lemma 3.19 below, which states that the mapping p 7→ E[E[g(Y )|p(X)]2] is

continuous on F for all g ∈ HY .

Proof of Lemma 3.19. Recall that every function g ∈ HY is continuous and bounded on Y as we

work on the compact domain Y and continuous kernels. This also holds for the kernel choices discussed

in Section 3.4.2.

We first prove that, under Assumption 3.3, the conditional expectation E[g(Y )|X = x] is continuous

on a PX -measure one subset of X . Let fX|Y (x|y) be a conditional density function as given in the

assumption. Note that the conditional density of Y given X may not exist because we allow Y can be

a discrete random variable. Letting BY denote the Borel σ-field of Y, the measure-theoretic version of

the Bayes theorem (the conditional density of Y given X may not exist because Y may be a discrete

variable) gives a regular conditional distribution κ : X ×BY → [0, 1] defined by

κ(x,B) =


∫
B
fX|Y (x|y)PY (dy)∫

Y fX|Y (x|y)PY (dy)
if the denominator is positive and finite,

arbitrary µx ∈ P(Y) otherwise.

Here, the set N of elements x ∈ X for which the denominator fX(x) =
∫
Y fX|Y (x|y)PY (dy) is zero or

infinite is a PX -null set. To verify this, for a measurable set A ⊆ X , observe that

P(X ∈ A) =

∫
Y

(∫
A

fX|Y (x|y)dx
)
PY (dy)

=

∫
A

(∫
Y
fX|Y (x|y)PY (dy)

)
dx =

∫
A

fX(x)dx ≤ 1

by Fubini’s theorem. Therefore, fX(x) becomes a marginal density function for X, which verifies that

N = {x | fX(x) = 0} ∪ {x | fX(x) = ∞} is a PX -null set. Then, for all u ∈ X \N , we compute that

E[g(Y )|X = x] =

∫
Y
g(y)κ(x, dy) =

∫
Y g(y)fX|Y (x|y)PY (dy)∫

Y fX|Y (x|y)PY (dy)
,

so the bounded convergence ensures that E[g(Y )|X = x] is continuous on X \N .

We then restrict our functions p ∈ F to the continuity set X \ N of E[g(Y )|X = x]. Let-

ting p1 = p|X\N be the restriction, note that the σ-fields σ(p(X)) and σ(p1(X)) are the same up

to their completion with respect to the ambient probability space [50, Chapter 8] because p−1(B)

and p−1
1 (B) only differ by a null set, for all Borel sets B ⊆ Z. A standard measure-theoretic ar-

gument [50, Exercise 1.9] and the almost sure uniqueness of the conditional expectation shows that

E[g(Y )|p(X)] = E[g(Y )|p1(X)] almost surely on X . Therefore,

E[E[g(Y )|p(X)]2] = E[E[g(Y )|p1(X)]2],

which verifies that we may assume E[g(Y )|X = x] is continuous on X by replacing X with X \ N .

Here, we keep the metric on F after the replacement. Note that X \ N may not be compact, but the

compactness of X is not required in the following arguments.

To complete the continuity proof, it suffices to show that the mapping

p 7→ E[g(Y )|p(X) = p(x)]

is continuous for all PX -a.e. x ∈ X , using the bounded convergence theorem. To describe the conditional

expectation E[g(Y )|p(X) = p(x)] in terms of E[g(Y )|X = · ] without additional structural information
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on p, we need an aid of the disintegration theorem [17]. The theorem guarantees that, for every p∗PX -a.e.

z ∈ Z, where p∗ denotes the pushforward map of measures along the function p : X → Z, there exists a

Borel probability measure PX,z on X that lives in the fiber p−1(z); i.e., PX,z(E) = PX,z(E ∩ p−1(z)) for

all Borel sets E ⊆ X . This disintegration measure gives rise to the following integral representation

E[g(Y )|p(X) = p(x)] =

∫
X
E[g(Y )|X = u] dPX,p(x)(u)

for all PX -a.e. x ∈ X . Letting Z0 ⊆ Z a subset on which the disintegration measures PX,z, z ∈ Z0,

are defined, Tjur [116, Section 4] proved that the mapping from Z0 to P(X ), sending z 7→ PX,z, is

continuous in the weak topology of probability measures. Recall that E[g(Y )|X = u] is continuous on X
and is furthermore bounded as g ∈ HY is a bounded function. Therefore, the weak convergence and the

continuity of the evaluation p 7→ p(x) ensure that the mapping p 7→ E[g(Y )|p(X) = p(x)] is continuous

in p ∈ F , which finishes the proof.

We finally establish the uniform convergence of the second part of (3.26), which completes the proof

of Proposition 3.23.

Corollary 3.31. Suppose that εn → 0 as n→ ∞. Under Assumptions 3.1 and 3.3, we have

sup
p∈F

∣∣Tεn(p)− Tr(ΣY Y |p(X))
∣∣→ 0, as n→ ∞.

Proof. We have shown in Lemma 3.29 and Lemma 3.30 that Tεn(p) and Tr(ΣY Y |p(X)) are continuous

on the compact set F . Since the regularization exhibits monotonicity, Tε(p) ≥ Tε′(p) whenever ε ≥ ε′,

we have the desired uniform convergence by Theorem 7.13 of Rudin [93].

3.7 Conclusions and Discussions

This chapter established a generalization of the linear kernel dimension reduction theory on the

Stiefel manifold to other specifically structured projection maps based on function-theoretic backgrounds

and intuitions on conditional covariance operators. We proved that the empirical estimator of this

generalized kernel dimension reduction is statistically consistent under mild continuity assumptions on

the family of projections. Furthermore, we have refined some of the theoretical assumptions of the

original theory by demonstrating the compatible nature of the conditional covariance operator and the

pullback of RKHS.

This advancement will pave the way for interpretable dimension reduction in compositional data

analysis. The forthcoming chapters will further illustrate this potential: Chapter 4 will introduce two

classes of F , the class of compositional variable selections and continuously relaxed importance weights,

and Chapter 5 will explore the classes of amalgamations and their continuous extensions, with a particular

focus on the latter. We also anticipate that we may naturally restrict the class of projections according

to extrinsic information of data; for example, a genetic similarity constraint to F based on phylogenetic

tree structure.

Beyond this, we envision the adaptation of our generalized framework to a wide range of structured

datasets. Another intriguing possibility lies in exploring F as a parameterized class within a fixed-

architecture neural network. These prospects represent compelling future research directions.

Lastly, we discuss the computational complexity of the KDR objective. As seen in the equation

(3.21), the single computation of the trace of the empirical conditional covariance operator requires at
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least O(n3) operations due to the matrix inversion. While this is not a critical issue for microbiome

datasets, which typically have fewer than 1,000 samples, broadening the application of our framework

will necessitate efforts to reduce computational complexity. One possible approach is employing low-rank

approximations to kernel Gram matrices with the Woodbury identity for matrix inversion, as suggested

by Chen et al. [20]. However, this may compromise the statistical guarantees demonstrated in Section 3.6,

thus posing a new research problem to assess consistency under these low-rank approximations.
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Chapter 4. Kernel Sufficient Dimension Reduction and

Variable Selection for Compositional Data via Amalgamation

4.1 Introduction

Compositional data are multivariate data that consist of nonnegative values in which only the relative

proportions of the components are meaningful. They are frequently normalized to sum to unity. Thus,

compositional data with d+ 1 variables lie on the d-dimensional simplex ∆d ⊂ Rd+1:

∆d =

{
(x0, . . . , xd)

∣∣∣∣∑xi = 1, xi ≥ 0, ∀i
}
.

This type of data appears commonly in many applications; for example, chemical compositions of honey

in food science, mineral compositions of rocks in geology, and composition of product categories of

customers’ internet shopping carts. This research is primarily inspired by microbiome data, which

measure the relative abundance of microbes that live in or on a human or animal’s body.

Microbiomes have recently received much attention in medical research due to their association with

various diseases and health-related attributes in humans [49, 40]. Modern sequencing technologies, such

as 16S rRNA gene sequencing, are used to quantify the raw numbers of microbiomes. However, as the

total number of counts varies greatly amongst the samples, the raw count data obtained in this manner

must be viewed as compositional [59]. In addition, microbiome data often exhibit high dimensionality and

contain excess zeros, i.e., there are much higher numbers of microbial taxa than available samples, and a

large percentage, about 50% to 90%, of counts are zero [68]. Identifying relevant variables is a common

and important task in the study of microbiome data because most taxa are unlikely to be associated with

the response of interest [54]. Accurately chosen microbial variables can be used in subsequent analyses

such as prediction with reduced computational cost and increased interpretability.

Despite the necessity of variable selection for high-dimensional sparse compositional data, there are

few approaches that rigorously perform it. As pointed out in Susin et al. [113], the main difficulty lies

in how to account for the compositional nature of the data, i.e., the spurious negative correlation due

to the sum-to-one constraint [84]. Dominantly popular approaches to compositional variable selection

are based on the log-ratio transformation designed to address this spurious correlation problem, which

is sometimes referred to as CoDA (Compositional Data analysis) methods [3]; we will introduce some of

them in Section 4.1.2.

However, these methods have a clear drawback that they cannot handle zeros in the data directly

due to the log transformations, even though most of the compositional data dealt with today contain

a large proportion of zeros. Researchers have then replaced zeros with small positive values, but the

results of data analysis have been inconsistent depending on how the zeros are replaced [67]. More

importantly, Park et al. [80] reveal that the combination of zero replacement and log-ratio transforms

inevitably yields unexpected distortions in the data. They demonstrate how even very basic manifold

structures of compositional data can be broken by such a combination of data translations, compromising

the accuracy of subsequent data analyses. The challenges regarding such inconsistency and distortion

have been widely documented in a variety of contexts including variable selection [78].
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4.1.1 Our Contributions

This work presents a new variable selection framework for compositional data. It provides a solution

to the two primary challenges in dealing with modern compositional data: high dimensionality and abun-

dance of zeros. Our method does not rely on log-ratio transformation, thereby successfully overcoming

the issues of inconsistency and distortion mentioned above. Inspired by Park et al. [80] who advocate

the use of kernel methods for compositional data with a compelling geometric argument, our proposed

approach is rooted in the existing kernel dimension reduction research by Fukumizu et al. [34, 32], Chen

et al. [20], which will be briefly reviewed in Section 4.3.

In Section 4.2, we show that a nontrivial critical problem occurs when defining the reduced set of

variables in compositional data. A process called amalgamation is suggested as a solution to this problem,

based on which we propose a variable selection algorithm in Section 4.4. The proposed method aims

to achieve sufficient dimension reduction (SDR) so that the (compositional) variables and the response

become independent conditioning on the projected covariates onto the SDR subspace [60]. Minimizing

the trace of the kernel conditional covariance operator after variable selection with amalgamation is

shown to yield a consistent SDR. In the compositional context, this means that all information in the

covariates relevant to the response is contained in some amalgamation of the original composition.

We also clarify the type of kernels to be used in classification and regression problems respectively,

in order to ensure the SDR property. It is revealed that the linear kernel commonly used for regression

is not universal and thus yields SDR under a rather restrictive population model. This finding corrects

some results in Chen et al. [20].

Finally, we demonstrate the performance of the proposed method with synthetic and real micro-

biomes data in Section 4.5 and conclude the chapter with discussions in Section 4.6.

4.1.2 Related Works

Variable selection methods using kernels. Various kernel measures on probability distributions

have been used in the literature to achieve adequate variable selections. For example, the Hilbert-Schmidt

Independence Criterion (HSIC) [44] is applied to obtain maximal dependence between variables and the

response, the conditional covariance operator is used to obtain conditional independence for SDR [20],

and the MaximumMean Discrepancy (MMD) [45] is applied to find marginally different variables between

two samples. Among them, HSIC seems to be used more frequently, from the greedy algorithm of Song

et al. [107] to continuously relaxed algorithms with regularizations [73, 126].

Several studies have also been conducted to test the significance of the selected variables using

kernels. These methods are based on Lee et al. [52]’s pioneering work on post-selection inference (PSI),

and kernel-based approaches have been successfully developed within this framework [127, 128, 62, 31].

However, because these kernel-based PSI algorithms utilize HSIC or MMD, which focus on marginal

distributions of individual variables, they may not be suitable for compositional data due to the spurious

correlation issue.

Variable selection methods for compositional data. A majority of variable selection methods

in the literature are based on log-ratio transformations. Among them, the constrained lasso approach to

the log-transformed data, in particular, has been extensively studied, where the constraint reflects the

ratio computations and may further reflect grouping or tree structures [63, 103, 123, 66]. Rivera-Pinto

et al. [90] alternatively propose a forward selection process using the log-ratio balance [27].

Recently, there has been a growing consensus on how to address the zero problem in compositional
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data analysis, leading to the development of methods that do not use log-ratio transforms. Tomassi

et al. [117] propose a likelihood-based SDR for compositional data as well as a variable selection method.

However, their non-log-ratio approach uses a linear projection of the raw count matrix, whose structure

is hardly interpretable. Wang [122] proposes a test for the differential abundance of each taxon based

on a multinomial model for the count matrix. These methods are yet based on the assumption that the

count data are drawn from specific distributions such as multinomial or Poisson distributions, whereas

our proposed method does not impose such assumptions on the underlying distribution.

4.2 Compositional Variable Selection via Amalgamation

In many cases, dimension reduction does not end with identifying a subspace or a subset of relevant

variables. The main goal of variable selection is mostly to improve the performance and interpretability

of a predictive model. Thus it is necessary to attain a dimension-reduced dataset that is suitable for

subsequent analyses. In the context of compositional data, it is crucial that the dimension-reduced data

are also compositional. Intuitively, there are two ways of achieving this, namely sub-composition and

amalgamation [3].

The sub-composition approach is simpler, in that it just re-normalizes the selected variables to

make a composition. This method is widely used in practice because taking sub-compositions can be

considered as orthogonally projecting data in the log-ratio geometry; see, for example, Section 4.6 of

Pawlowsky-Glahn et al. [83]. However, the toy example below demonstrates that this approach may not

yield learnable data.

Consider the following toy microbiome data X = (X0, X1, X2, X3) ∈ ∆3 with four covariates. Let

Y ∈ {0, 1} be a binary variable indicating the presence of a disease and assume that the deficiency of

two taxa S = {X0, X1} causes the disease. Let (x, 1) and (x′, 0) be two samples from (X,Y ) with

x = (0.01, 0.01, 0.38, 0.6) and x′ = (0.4, 0.4, 0.1, 0.1).

Suppose some variable selection is carried out and the variables in S are correctly selected. Then,

both sub-compositions xS and x′S are (0.5, 0.5) with different labels, which are unsuitable for further

investigation. This is because relative abundance to the total is lost when taking sub-compositions. This

problem exacerbates when there are many zeros in the data, which is almost always the case in microbiome

studies. If the absence of taxa in S causes the disease, then the disease group’s sub-composition will

probably be entirely zero, which cannot be made compositional.

In contrast, amalgamation is an intuitive process to reduce the dimensionality of compositions. It is

commonly used to organize microbiomes according to the phylogenetic tree structure [59]. The procedure

involves defining integers ci such that

0 = c0 < c1 < · · · < cm+1 = d+ 1,

and then taking zj = xcj + · · · + xcj+1−1, j = 0, . . . ,m, so that the resulting vector (z0, . . . , zm) lies on

the lower dimensional simplex ∆m. However, even though compositional data are frequently obtained

through an amalgamation process, it has been hardly used for data analysis, because it is incompatible

with the dominant log-ratio approaches [83]. In particular, amalgamations do not behave like linear

projections in log-ratio geometry. Recent studies have attempted to reconcile amalgamation with log-

ratio methods [41, 43], arguing that amalgamation yields better interpretation and is essential for certain

types of compositional data, such as in geochemistry and mineralogy.
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In this work, we argue that the controversy surrounding amalgamation becomes irrelevant in kernel

methods in the sense of Park et al. [80] and amalgamation is the most valid way to perform dimension

reduction or variable selection of compositional data. We state the variable selection framework as follows:

if S = {s1, . . . , sm} ⊂ {0, . . . , d} is a subset of variables, then we propose to identify the projection map

pS : ∆d → ∆m,

pS(x0, . . . , xd) =

xs1 , . . . , xsm ,∑
j ̸∈S

xj

 . (4.1)

By including a dummy variable that aggregates all unselected variables, this special case of amalgamation

is intuitive and overcomes the issue of sub-composition discussed earlier, preserving information on the

relative abundance to the total.

4.3 Sufficient Dimension Reduction and Variable Selection with

Kernels

This section provides an overview on the principle of SDR and kernel variable selection derived from

kernel dimension reduction. The latter discussion is largely credited to Chen et al. [20], who adopt the

kernel dimension reduction (KDR) method of Fukumizu et al. [34] for the variable selection purpose.

4.3.1 Sufficient Dimension Reduction

Let (X,Y ) be a joint random variable with a joint distribution PX,Y defined on X×Y, where X ⊂ Rd

is a domain of covariates and Y is a domain of response. The general dimension reduction problem is

described as finding a pair (Z, p) of a lower dimensional domain Z ⊂ Rm, m ≤ d, and a projection map

p : X → Z such that the variable p(X) has enough information about Y . In case p(X) retains all the

relevant information of Y , it is called sufficient dimension reduction (SDR) and is theoretically defined

as

PY |p(X) = PY |X , or equivalently, Y ⊥⊥X | p(X) (4.2)

where PY |∗ denotes conditional probability distribution of Y given ∗. This is a general scheme that makes

no assumptions about the distribution of (X,Y ), and has been extensively studied in the literature; for

a recent reference, see Li [55]. Early studies on SDR tend to find the map p that achieves (4.2) among

the orthogonal projections onto linear subspaces. However, because the orthogonal projections do not

generally send simplex to simplex, the nonlinear SDR theory [53] is more relevant to our purpose.

The conditional mean function E[Y |X], rather than the entire dependence structure PY |X , is fre-

quently of interest in statistical problems. Then the dimension reduction aims to achieve a weaker

condition, i.e., the maximum predictive ability using p(X):

E[Y |X] = E[Y |p(X)] ⇔ Y ⊥⊥E[Y |X] | p(X). (4.3)

This assumption is called sufficient dimension reduction for conditional mean, which is by definition a

special case of SDR. Intuitively, (4.3) means that it is enough for predicting Y , and it becomes equivalent

to SDR under certain assumptions. For example, statistical models often assume that the conditional

mean has all information on PY |X ; that is, Y ⊥⊥ X |E[Y |X]. This is known as location regression [22],

and it includes the additive error models Y = f(X) + ϵ with X ⊥⊥ ϵ. Under this assumption, it is

straightforward to see that (4.3) implies (4.2).
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4.3.2 RKHS and Conditional Covariance Operator

While many SDR approaches are available, Fukumizu et al. [32, 34] propose to use kernel measures

of conditional independence, which has often exhibited empirical success. In what follows, we present

theory and remarkable properties of the conditional covariance operator of RKHSs, proposed originally

by Baker [9].

Let kX and kY denote positive definite kernels on X and Y satisfying the boundedness condition in

means:

EX [kX (X,X)] <∞ and EY [kY(Y, Y )] <∞. (4.4)

Note that (4.4) ensures that the corresponding RKHSsHX andHY are continuously embedded in L2(PX)

and L2(PY ), respectively, and ensures the existence of mean embedding maps P 7→ µP := EP [k(W, · )] ∈
H, where P denotes an arbitrary probability measure [77]. If the mean embedding map of an RKHS

(H, k) is injective, it is called characteristic.

The cross-covariance operator of (X,Y ), ΣY X : HX → HY , is defined by the adjoint relations

⟨g,ΣY Xf⟩HY = EX,Y [(f(X)− EX [f(X)]) (g(Y )− EY [g(Y )])]

for all f ∈ HX and g ∈ HY . If Y is equal to X, then ΣXX is called the covariance operator. It induces

a unique bounded operator VY X : HX → HY such that

ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX

with ∥VY X∥ ≤ 1 [9]. This is called the normalized cross-covariance operator (NOCCO), which resembles

the correlation in classical statistics [33]. It helps to define the following conditional covariance operator

without worrying about the invertibility of ΣXX :

Definition 4.1. The conditional covariance operator ΣY Y |X : HY → HY of Y given X is defined by

ΣY Y |X = ΣY Y − Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y .

When ΣXX is invertible, it immediately follows that

ΣY Y |X = ΣY Y − ΣY XΣ−1
XXΣXY ,

analogous to the well-known multivariate Gaussian case.

The following two results from Fukumizu et al. [34] provide insights into the meaning of the condi-

tional covariance operator. The former shows its role in assessing the predictive ability of Y given X,

and the latter reveals that ΣY Y |X indeed captures the conditional variance of Y given X.

Proposition 4.2. For any g ∈ HY , we have

⟨g,ΣY Y |Xg⟩HY = inf
f∈HX

EX,Y |(g(Y )− EY [g(Y )])− (f(X)− EX [f(X)])|2 .

If HX + R is dense in L2(PX), then

⟨g,ΣY Y |Xg⟩HY = EX [VarY |X [g(Y )|X]]. (4.5)

Note that the condition of (4.5) always holds when kX is bounded and characteristic [34]. This

means that the injectivity of the mean embedding map ensures the richness of RKHS up to a constant

sum. There is another notion of richness of RKHS (H, k), called universality. When the domain X is

compact and k is continuous, we say that (H, k) is universal if H is dense in the space of continuous

functions C(X ). There are numerous universal kernels used in practice, such as Gaussian or Laplace

kernels, and it is known that every universal kernel is characteristic [45].
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4.3.3 Kernel Feature Selection (KFS) via Minimization of Conditional Co-

variance

Motivated by (4.5), Fukumizu et al. [34] and Chen et al. [20] show that minimizing the trace

of the conditional covariance operator after projection achieves SDR. The problem of finding suitable

projections is formulated as follows. For any vector x ∈ Rd and any subset S ⊆ {1, 2, . . . , d}, let xS be

the vector with components (xS)i = xi if i ∈ S and (xS)i = 0 otherwise. Then the objective for variable

selection is to find S such that

argmin
S⊆{1,...,d}

Tr(ΣY Y |XS ), (4.6)

where Tr(·) denotes the trace of a self-adjoint operator.

It is important to note that this approach is essentially different from traditional RKHS methods

for dimension reduction. Well-known RKHS methods such as kernel PCA or kernel Fisher discriminant

analysis [76], first map the data into an RKHS and then carry out low-dimensional projections within

the high-dimensional RKHS. This initial embedding process inevitably leads to an interpretation loss

with respect to the original variables. On the other hand, the KFS methods [34, 20] first project the

data (or select the variables) in a way that preserve interpretability, and then use kernel measures to

evaluate the validity of the projection.

4.4 Proposed method

This section describes our kernel variable selection method for compositional data using the amal-

gamation in (4.1). Given n i.i.d. samples (x1, y1), . . . , (xn, yn) of the random variables (X,Y ) ∈ ∆d×Y,

our task is to find a subset S = {s1, . . . , sm} ⊂ {0, . . . , d} of variables whose projection pS(X) =

(Xs1 , . . . , Xsm ,
∑
j ̸∈S Xj) ∈ ∆m best represents the outcome Y .

4.4.1 Construction of RKHS

The proposed method first lifts the data by adding an extra zero coordinate to X, i.e., we set

X̃ = (X, 0) ∈ ∆d+1. This lifting process does not affect the theory but will simplify the notations. Let

X = ∆d+1 be the extended domain where lifted compositions reside and define, by abusing notations,

pS : X → ∆m by pS(x
′) = (x′s1 , . . . , x

′
sm ,
∑
j ̸∈S x

′
j). That is, we also lift the projection map pS to satisfy

pS(x̃) = pS(x). Then, define a right inverse iS : ∆m → X of pS , given by iS(z1, . . . , zm+1) = x with

xj = 0 for j ̸∈ S, xsi = zi, and xd+1 = zm+1. One can readily check that pS ◦ iS(z) = z for all z ∈ ∆m.

Finally, we identify X̃ = X and redefine the notation XS of the selection result by

XS = iS ◦ pS(X), X ∈ X . (4.7)

Let (HX , kX ) be an RKHS on X = ∆d+1, and let (HY , kY) be an RKHS on Y. The embedding iS defined

above gives rise to a pullback kernel kS on ∆m defined by

kS(z, w) = kX (iS(z), iS(w)).

Defining a kernel on the codomain ∆m in this way has the advantage that it can cover all possible

values of the target dimension m, and that the RKHS of kS , denoted by HS , can naturally interact with

functions on X . The interactions can be stated as the following lemma:
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Lemma 4.3. There is another RKHS (H, k) on X that is isomorphic to (HS , kS) on ∆m. Furthermore,

if (HX , kX ) is universal, then so is (HS , kS).

The kernel k is given so that k(x, x′) = kX (xS , x
′
S); we provide the proof in the supplementary

materials. According to the lemma, we can conduct all of our theoretical analysis on the projected

domain ∆m, including those requiring universality, within the function space on X , L2(PX). Meanwhile,

using HS has an explicit interpretation of the function space on the projected domain, as will be seen in

Corollary 4.6.

4.4.2 SDR and Conditional Covariance Operator

From the discussion above, we can derive a theorem that parallels Theorem 2 in Chen et al. [20]

and Theorem 4 in Fukumizu et al. [34]:

Theorem 4.4. Let ΣY Y |XS denote the conditional covariance operator with the kernel k given in

Lemma 4.3. Then, if (HX , kX ) is universal and (HY , kY) is characteristic, we have

ΣY Y |X ⪯ ΣY Y |XS ,

where the equality is attained if and only if Y ⊥⊥ X |XS . Here, the inequality ⪯ stands for the partial

order of self-adjoint operators.

The inequality part follows immediately from Proposition 4.2. However, proving the equality condi-

tion needs exhaustive work due to the new projection XS in (4.7). We give a full proof in the supplemen-

tary materials, Section 4.7. Note that the universality ofHX is imposed for simplicity and interpretability,

and it may be relaxed to being characteristic.

Theorem 4.4 implies that the trace of self-adjoint operators has the following relation

Tr(ΣY Y |X) ≤ Tr(ΣY Y |XS )

for all subsets of variables S. Thus the variable selection problem for compositional data can be stated

as

argmin
S⊆{0,...,d}

Tr(ΣY Y |XS ), (4.8)

which is a compositional version of (4.6) with XS defined in (4.7). Note that the trace equality

Tr(ΣY Y |X) = Tr(ΣY Y |XS ) implies SDR since the operator ΣY Y |XS − ΣY Y |X is nonnegative and self-

adjoint.

Based on this main result, we now consider the choice of the kernel kY . For binary or multi-class

classification tasks with Y = {y1, . . . , yk} ⊂ R, we can use the delta kernel kY(y, y
′) = δy,y′ , which is

equal to 1 when y = y′ and 0 otherwise. Note that the delta kernel is universal on the discrete domain

Y so the aforementioned theory applies. The relative advantage of the delta kernel over the Gaussian

kernel has been mentioned by Yamada et al. [126] who investigate the performance of HSIC-Lasso under

the two kernel choices.

For regression problems, Chen et al. [20] argue that one can use the linear kernel for a univariate

response. However, we discover that Corollaries 3 and 4 in their work contain minor errors and the

conclusions are overstated. Even though these errors do not preclude the practical application of the

method, we give a corrected version below for clarity. The proofs are provided in the supplementary

Section 4.7.
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Let Y = R and define kY as the linear kernel kY(y, y
′) = yy′. It should be noted that the RKHS

HY = R∨ is not characteristic so Theorem 4.4 cannot be applied to ensure the full SDR, which is claimed

in Corollary 3 of Chen et al. [20]. Nonetheless, the presence of the identity function idY in HY leads to

a weaker result, which is the SDR for conditional mean:

Proposition 4.5. If (HX , kX ) is universal, Y = R, and if kY is the linear kernel on Y, then the trace

equality Tr(ΣY Y |X) = Tr(ΣY Y |XS ) implies E[Y |X] = E[Y |XS ], the SDR for conditional mean.

That is, in the case of univariate regression with the linear kernel, solving (4.8) achieves the SDR

for conditional mean. However, Corollary 3 of Chen et al. [20] inaccurately states that it achieves the

full SDR. If we further assume the location regression model on the population (Section 4.3.1), we then

obtain the full SDR:

Tr(ΣY Y |X) = Tr(ΣY Y |XS ) ⇔ Y ⊥⊥X |XS .

Using the linear kernel on Y = R has another advantage of characterizing the trace of the conditional

covariance operator as the minimized variance of prediction error after projection. Thus solving (4.8) is

equivalent to finding a subset S that minimizes this variance:

Corollary 4.6. Under the assumptions of Proposition 4.5,

Tr(ΣY Y |XS ) = inf
f∈C(∆m)

VarX,Y [Y − f(pS(X))].

If we assume on the population that there exists a continuous function f on ∆m such that the

response is expressed as

Y = f(pS(X)) + ϵ, X ⊥⊥ ϵ, and E[ϵ] = 0, (4.9)

then Corollary 4.6 is equivalently stated in terms of the mean squared error:

Tr(ΣY Y |XS ) = inf
f∈C(∆m)

EX,Y (Y − f(pS(X)))2.

This is the form asserted in Corollary 4 of Chen et al. [20], implicitly assuming (4.9).

4.4.3 Variable Selection Algorithm

The solution set of (4.8) is always nonempty since the whole data X achieves the minimum. For

practical purposes, it is natural to limit the number of variables we want to select, and this is written as

argmin
|S|≤m

Tr(ΣY Y |XS ). (4.10)

Solving (4.10) will result in a variable selection that is nearly SDR (classification) or SDR for conditional

mean (univariate regression). The remaining procedure for solving this objective is similar to that of

Chen et al. [20] and we briefly illustrate it here.

For (x1, y1), . . . , (xn, yn) ∈ ∆d × Y, we first lift them into X × Y as described before. Then the

empirical estimate of Tr(ΣY Y |XS ) is defined by

Tr(Σ̂
(n)
Y Y |XS

) = Tr(Σ̂
(n)
Y Y − Σ̂

(n)
Y XS

(Σ̂
(n)
XSXS

+ ϵnI)
−1Σ̂

(n)
XSY

)

= ϵnTr(GY (GXS + nϵnIn)
−1),

(4.11)

where the Σ̂
(n)
∗∗ are empirical estimates of covariance operators, GY and GXS are centered Gram matrices,

and ϵn is a regularization parameter. Here, letting H = In − 1
n11

T , 1 = (1, · · · , 1) ∈ Rn, the centered

version of a gram matrix K is defined by G = HKH.
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Note that the delta kernel we use in the classification case is equivalent to the linear kernel kY(y, y
′) =

⟨y, y′⟩ on the one-hot encoded domain Y = {y ∈ {0, 1}k |
∑
i yi = 1} ⊂ Rk. Hence, we fix kY by the

linear kernel for the classification or univariate regression case. Then the Gram matrix KY is YYT ,

where Y is the matrix of sample responses on rows. We assume, without loss of generality, that the

mean of each column of Y is zero, resulting in GY = YYT . Then, the minimization of (4.11) is stated

as

min
|S|≤m

Tr(YT (GXS + nϵnIn)
−1Y), (4.12)

which is the empirical version of our objective. In the binary response case, k = 2, this is equivalent to

using Y = {0, 1} with the linear kernel so that we may reduce the column dimension of Y to 1.

In the following theorem, we show that a consistency result holds for the global optimum of (4.12),

justifying that minimizing the empirical estimate will asymptotically achieve the population minimum

(4.8). See the supplementary materials, Section 4.7, for the simpler proof using discrete nature than the

proof given in Chapter 3.

Theorem 4.7. Let Ŝ(n) be a global optimum that minimizes (4.12). If the regularization parameter ϵn

satisfies

ϵn → 0 and n1/2ϵn → ∞ as n→ ∞,

then Tr
(
Σ̂

(n)
Y Y |XŜ(n)

)
→ Tr

(
ΣY Y |XS′

)
in probability, where S ′ ∈ argmin|S|≤m Tr(ΣY Y |XS ).

A brute-force search of (4.12) is computationally infeasible for high dimensions since the number(
d
m

)
grows exponentially. We relax this problem to a continuous one that can be solved by the gradient

descent method, as similarly done in Chen et al. [20]. Note that we can express XS as (w⊙X, 1−wTX)

where w = (w0, . . . , wd) ∈ {0, 1}d+1 denotes a binary weight vector with wi = 1 if and only if i ∈ S, and
⊙ denotes the Hadamard product. Now relaxing the weights to allow continuous values with 0 ≤ wi ≤ 1

and
∑
wi ≤ m, define

Xw := (w ⊙X, 1− wTX) ∈ X .

Then our relaxed objective is written as

min
w

Tr(YT (GXw + nϵnIn)
−1Y)

subject to ∥w∥1 ≤ m, 0 ≤ wi ≤ 1, ∀i.
(4.13)

Given that the kernel kX is smooth and universal, we can apply projected gradient descent to solve this

optimization problem. Although the objective function is nonconvex when typical universal kernels are

used, the projected gradient descent algorithm is able to find true signal variables well, as shown in

Section 4.5 (see also Ruan et al. [92]). After obtaining an approximated solution ŵ via gradient descent,

we reconstruct a variable selection Ŝ whose corresponding binary vector is closest to ŵ.

Note that each gradient descent step to equation (4.13) requires O(n2d + n3) computations. This

is not a big problem in practice because compositional data typically have a low sample size. The

complexity can be reduced further by adopting a low-rank approximation of kernel matrices, such as

random Fourier features [87].

4.5 Experiments

This section conducts experiments on synthetic and real microbiome data to assess the performance

of the proposed variable selection method under both classification and regression scenarios. We compare
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it with two methods, coda-lasso [63, 66] and selbal [90], chosen from the recent survey by Susin et al.

[113]. These two methods are based on log-ratio transformation, so we replace zero values in each sample

x by 0.5xmin, where xmin is the minimum positive value of x. We also provide results of other zero

replacement methods in the supplementary Section 4.7.1; to do this, we delete columns with fewer than

two positive values in all data. We use the R codes provided by Susin et al. [113] for their implementation,

and the Python code for our method is available at https://github.com/pjywang/KVS-CoDa.

For the proposed method, we use a Gaussian kernel kX (x, x′) = exp (−∥x− x′∥2/σ2) with σ being

the standard median pairwise distance between samples. Across all experiments, the regularization

parameter ϵ is set to ϵ = 0.001 for classification tasks and ϵ = 0.1 for regression tasks; we find that these

values work stably in general. Cross-validation (CV) can also be used in conjunction with classification

or regression algorithms.

4.5.1 Synthetic Data

We begin with simulations of microbiome count data proposed by Te Beest et al. [114], which reflect

the varying total counts and zero-inflation. The (i, j)th-entry Xij of an n×p count matrix X is sampled

from a negative binomial distribution with mean µij and variance µij + µ2
ij . The mean µij follows a

log-linear model

logµij = ai + tj + eyi, (4.14)

where ai reflects the total abundance of the ith sample, tj reflects the abundance of taxon j, e represents

the effect size on taxon j, and yi ∈ {0, 1} indicates whether the ith sample has an effect. The parameters

ai and tj are drawn from normal distributions, N(0, 1) and N(0, 2), respectively. Only 10% of p taxa

are set to be relevant to yi with e = ± log 5, where the signs are given with equal probabilities, while

the rest of e are set to zero. To ensure that taxa mostly consisting of zeros receive no effect, these 10%

relevant taxa are randomly selected from the top 70% of variables with the highest tj values. The binary

response vector Y = (y1, . . . , yn) is set to have the same number of zeros and ones. Finally, the taxa

present in fewer than two samples are removed, and the count matrix X is normalized so that each row

sums to 1. This model generates approximately 50% of zeros in the data.

We first generate data with fixed (n, p) = (200, 100) so that only ten taxa retain effects. We then

apply the variable selection algorithms with the desired number of selected variables m ∈ {5, 10, . . . , 40}.
Because the lasso algorithm does not specify the number of variables to be chosen, we perform coda-

lasso on with the tuning parameter ranged in [0.01, 0.2], and the best performance among the models

that select m,m + 1, . . . ,m + 4 variables is recorded. This process obviously favors coda-lasso, as it

inflates its power. Nevertheless, its performance is inferior to our method.

For the second experiment, we fix p = 100 and vary n ∈ {200, 400, . . . , 1000} to examine the

convergence to the true number of variables with effects. In this case, we set the proposed and selbal

algorithms to pick the true number of variables, m = 10. We again perform coda-lasso as described

above, and record the best performance among the models that choose m∗ ∈ {10, 11, . . . , 14} variables.

We run these two experiments 50 times; the results are shown in Figure 4.1.

As illustrated in the figure, the proposed method clearly outperforms the log-ratio methods on

average. The left panel shows an increasing probability of selecting true signal variables as we select

more variables in the algorithm. Note that selbal fails to exhibit such a phenomenon because its forward

selection algorithm often terminates before achieving the upper bound m. In contrast, the proposed

method achieves the bound in most cases. In the right panel, we observe that the power of the proposed
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Figure 4.1: Variable selection results from 50 runs of synthetic data. The y-axis denotes the number

of correctly selected features. The maximum number of true variables can be chosen by algorithms

is indicated by the top dotted line. The x-axis of the left panel denotes the desired number m ∈
{5, 10, . . . , 40} of variables selected by algorithms, while the x-axis of the right panel denotes the sample

size n ∈ {200, 400, . . . , 1000}. The average numbers of selected variables ± standard error are shown for

each method. Note that the result of coda-lasso is displayed in its favor.

method increases as the sample size grows and converges to the true value of 10. The log-ratio methods

do not exhibit clear convergence to the true value, and the power of selbal does not even increases as n

grows.

Varying Zero Proportions. By adjusting the means of the parameters ai and tj in the log-

linear model (4.14), we may generate similar synthetic data with different zero proportions. Suppose ai

and tj are drawn from N(a, 1) and N(t, 2), respectively. Setting (a, t) as (2.2, 1.5), (1, 0.5), (0, 0), and

(−1.1,−0.5) yields the generate data to contain about 10%, 30%, 50%, and 70% of zeros, respectively.

Table 4.1 reports the results with (n, p) = (500, 100). The proposed method clearly outperforms the

other methods and shows consistent power over a wide range of zero proportions. The performance is

slightly weakened when the zero proportion is 70%, which is a natural consequence of the data generation

process. Since the data are generated as nonnegative counts, the signal of data shrinks as the ratio of

zeros increases because the effect size e = log 5 is fixed.

In contrast, the other two log-ratio methods, coda-lasso and selbal, exhibit highly inconsistent results

as the zero proportion changes. When the zero proportion is less than 50%, these methods perform

unexpectedly poorly. This is probably due to the data distortions caused by zero replacement and log

transformation [80] are more severe when the zero rates are moderately low. This issue is alleviated

slightly if the zero proportion increases, as the model (4.14) generates a larger number of columns with

mostly zeros. Such columns are similarly impacted by zero replacement and log transformation, making

it easier for supervised learning methods to rule these irrelevant columns out. It would be worthwhile

to observe if this inconsistent behavior maintains for other synthetic data settings, and we leave this as

future work.
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Table 4.1: Average numbers of true variables selected from 50 runs of synthetic data with different zero

proportions. The data has ten true variables, and the parameter m is set to 10. The tuning parameter

of coda-lasso is set to select between 10 and 14 variables. All standard errors range between 0.1 and 0.2.

Zero % 10% 30% 50% 70%

Proposed 9.26 9.1 9.12 8.46

Selbal 0.78 1.74 3.36 4.22

Coda-lasso 2.32 3.7 5.76 6.3

Table 4.2: Prediction accuracy of each variable selection method on the BMI dataset. Results are

shown in terms of mean ± one standard error of the estimated MSEs over ten repetitions.

Estimated MSE

Methods m = 3 m = 5 m = 10

Proposed 28.90± .048 28.87± .037 28.99± .072

Selbal 33.03± 1.66 32.91± 1.79 34.64± 1.85

Coda-lasso 29.29± .297 (selects 0 to 8 variables)

4.5.2 BMI Microbiomes Data

We also evaluate our proposed method with the body mass index (BMI) dataset [125], which has

been repeatedly analyzed with the constrained lasso approaches [63, 103, 123]. The dataset consists

of 98 gut microbiome samples with BMI information and organized into 87 genera. For the purpose of

comparison in the supplementary Section 4.7.1, 10 genera that appeared in only one sample are removed.

As a result, the data have 77 dimensions with 68.6% of zero values.

To obtain the estimated prediction error for this regression problem, we run ten repetitions of

randomly split five-fold CV. For selbal and the proposed method, we use m ∈ {3, 5, 10}. While selbal

and coda-lasso are integrated within prediction modeling, the proposed method requires a separate

regression analysis to assess its prediction ability. We radially transform the chosen amalgamation onto

the sphere and then apply kernel ridge regression (KRR) with the Gaussian kernel [80]. All tuning

parameters, including the Gaussian width of KRR and regularization parameters of KRR and lasso, are

chosen based on the five-fold CV within the training set.

Table 4.2 lists the estimated mean squared errors (MSE) over ten runs of CV. As can be observed, the

proposed method compares favorably with log-ratio methods, achieving the smallest MSE and variance.

The choice of m = 3, 5 is comparable to the fact that only four genera are selected in Lin et al. [63]

and Shi et al. [103]. However, the selected genera from our method fairly differ from coda-lasso. Given

the prediction accuracy and results presented in Section 4.5.1, our result should be considered more

reasonable.
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4.6 Conclusion and Future Works

This work proposes a new variable selection framework for compositional data based on amalga-

mation. The proposed method aims to achieve SDR by minimizing the conditional covariance of the

response given selected covariates. Also, the statistical consistency of the proposed method is provided.

It is broadly applicable to general compositional data and does not impose strong assumptions on the un-

derlying probability distributions. Finally, the proposed approach is shown to exhibit consistent results

and outperform existing log-ratio approaches in both synthetic and real-world experiments.

An interesting implication of the present research is that amalgamation may have many more appli-

cations than have been previously considered for compositional data analysis. Amalgamation would not

be a justifiable practice for general Euclidean data, however, the intrinsic nature of compositional data

makes it a valid option for reducing the complexity of the data. For instance, in the dimension reduction

context, we may extend the search space to include all possible amalgamations of the variables, which

we leave as future work.

The optimization problem of the kernel-based dimension reduction and variable selection is noncon-

vex and susceptible to local optima. However, recent work by Ruan et al. [92] finds that with l1 kernels,

the stationary points of gradient descent are nonetheless able to select the true signal variables. It is

worthwhile to examine if this result extends to our amalgamation-based situation.

4.7 Supplementary Materials

This section presents additional experimental results with different choices of zero replacement

methods and give proofs of the omitted theoretical results.

4.7.1 Comparison to Other Zero Replacement Methods

While our method does not substitute zero values of compositional data, the other log-ratio methods

compared in Section 4.5 produce different results depending on how the zeros are replaced [67]. Therefore,

in this section, we provide additional experimental results using two other zero replacement methods:

1sum (which adds one pseudocount; e.g., see Brill et al. [14]) and the geometric Bayesian multiplicative

(gbm) replacement [72]. The gbm method requires data to have at least two positive values at each

column and is implemented by the R package zCompositions. The results show that the proposed

method still has superior performance and that the 0.5xmin replacement is not a bad choice for coda-

lasso and selbal.
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Synthetic data

Table 4.3: Mean true positives over 50 runs of synthetic data with varying m and n. The other

experimental settings are the same as in Section 4.5. Standard errors range between 0.1 and 0.3

n = 200, p = 100 p = 100, m = 10

Methods m = 10 m = 20 m = 30 m = 40 n = 200 n = 400 n = 600 n = 800 n = 1000

proposed 7.06 8.68 9.32 9.44 7.06 8.34 9.12 9.5 9.5

coda-lasso + 0.5xmin 4.96 6.38 7.40 8.18 4.58 5.88 6.14 6.40 6.64

coda-lasso + 1sum 5.00 6.38 7.42 8.10 4.66 6.22 6.32 6.64 7.08

coda-lasso + gbm 3.84 4.90 6.08 6.98 3.66 4.28 4.54 4.74 4.34

selbal + 0.5xmin 2.60 3.44 3.64 3.68 2.80 3.16 3.82 3.84 3.82

selbal + 1sum 2.92 3.50 3.74 3.74 2.92 3.28 3.90 3.96 4.00

selbal + gbm 1.56 2.16 2.32 2.36 1.56 2.22 2.44 2.78 2.58

BMI Microbiomes Data

Table 4.4: Estimated MSE over 10 repetitions of cross-validation on the BMI dataset.

Estimated MSE

Methods m = 3 m = 5 m = 10

proposed 28.90± .048 28.87± .037 28.99± .072

selbal + 0.5xmin 33.03± 1.66 32.91± 1.79 34.64± 1.85

selbal + 1sum 33.46± 1.73 33.92± 1.85 36.52± 1.95

selbal + gbm 32.91± 2.00 37.05± 3.57 41.16± 4.12

coda-lasso + 0.5xmin 29.29± .297 (selects 0 to 8 variables)

coda-lasso + 1sum 30.52± .379 (selects 0 to 16 variables)

coda-lasso + gbm 29.05± .440 (selects 0 to 7 variables)

4.7.2 Proof of Results

Although most proofs for this chapter are already similarly given in Chapter 3, we elaborate some

details of the precise proofs here since the underlying settings of the theory of this chapter are slightly

changed and tailored for variable selection.
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Proof of Lemma 4.3

The kernel kS defines another pullback kernel

k(x, x′) = kS(pS(x), pS(x
′)) = kX (xS , x

′
S) (4.15)

with the corresponding RKHS H on X . By pullback theorem of Paulsen and Raghupathi [82], there is

a well-defined surjective pullback map p∗ : HS → H given by

p∗(f) = f ◦ pS ∈ H, ∀f ∈ HS .

Note that the fact f ◦ pS ∈ H is nontrivial and this is where the pullback theorem is used. Recall that

xS = iS ◦ pS(x) and pS ◦ iS = id∆m . As pS is surjective, the equation (4.15) implies that the pullback

map p∗ preserves the RKHS inner product; thus, p∗ is an isometry. Therefore, the pullback map p∗ is

an isomorphism HS ∼= H.

By construction, the embedding iS : ∆d → X is a homeomorphism onto its image. This topological

embedding iS allows the codomain ∆m to be regarded as a subset of X . Then, if kX is universal, so is

kS , as stated in Lemma 4.55 of Steinwart and Christmann [111].

Proof of Theorem 4.4

The proof is almost identical to the proof of Theorem 3.15, except for the settings on the RKHS

(HX , kX ).

For any g ∈ HY , by Proposition 4.2 we have

⟨g,ΣY Y |Xg⟩HY = inf
f∈HX

EX,Y |(g(Y )− EY [g(Y )])− (f(X)− EX [f(X)])|2

⟨g,ΣY Y |XSg⟩HY = inf
f∈H

EX,Y |(g(Y )− EY [g(Y )])− (f(X)− EX [f(X)])|2 .

Note that our X is compact Hausdorff, and hence the space C(X ) is dense in L2(µ) for all probability

measures µ on X . It is well-known that C(X ) is continuously embedded in L2, so HX is dense in L2(µ)

for all probability measure µ by universality assumption. As H is contained in L2(PX ), it immediately

follows that

⟨g,ΣY Y |Xg⟩HY ≤ ⟨g,ΣY Y |XSg⟩HY for all g ∈ HY ,

which is exactly the definition of partial order ⪯; that is, ΣY Y |X ⪯ ΣY Y |XS .

For the equality, we consider the counterpart of feature selection pSc(X) ∈ ∆d−m+2 where Sc =

{0, . . . , d} \ S. Let (U, V ) = (XS , XSc). The primary ingredient of the proof is that (XS , XSc) is in one-

to-one correspondence with the original X, rather than the strict equality as in the references (finding

this kind of counterpart with one-to-one correspondence may be hard if we take arbitrary projections).

Then, by the law of total variance, we have

VarY |U [g(Y )|U ] = E(U,V )|U [VarY |U,V [g(Y )|U, V ]|U ] + Var(U,V )|U [EY |U,V [g(Y )|U, V ]|U ]. (4.16)

We then take EU on both sides. Identifying U = XS with pS(X) on ∆m, the left hand side becomes

EU [VarY |U [g(Y )|U ]] = ⟨g,ΣY Y |Ug⟩HY
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by Proposition 4.2. Based on the one-to-one correspondence and the tower law, the first term of the

right-hand side of (4.16) is computed as

EU [E(U,V )|U [VarY |U,V [g(Y )|U, V ]|U ]] = EU,V [VarY |U,V [g(Y )|U, V ]]

= EX [VarY |X [g(Y )|X]]

= ⟨g,ΣY Y |Xg⟩HY .

Then the equation (4.16) turns into

⟨g, (ΣY Y |U − ΣY Y |X)g⟩HY = EU [VarX|U [EY |X [g(Y )|X]|U ]]. (4.17)

As we have shown that ΣY Y |X ⪯ ΣY Y |XS , the LHS is zero if and only if ΣY Y |X = ΣY Y |U (note that g ∈
HY is arbitrary). On the other hand, the RHS of (4.17) is zero if and only if VarX|U [EY |X [g(Y )|X]|U ] = 0

for almost every U , which means that

EY |X [g(Y )|X] = EX|U [EY |X [g(Y )|X]|U ]

= EY |U [g(Y )|U ]

for almost every U , and for every g ∈ HY . It then follows that the mean embeddings of conditional

distributions PY |X and PY |U are the same in HY . As HY is characteristic, we have that PY |X = PY |U ,

which is equivalent to Y ⊥⊥X |U (∵ σ(U) ⊆ σ(X)).

Proof of Proposition 4.5

Plugging g = idY into the equation (4.17), we have

⟨idY , (ΣY Y |XS − ΣY Y |X)idY⟩HY = EXS [VarX|XS [EY |X [Y |X]|XS ]] = 0, (4.18)

which only implies E[Y |X] = E[Y |XS ]. This can imply Y ⊥⊥X|XS as stated in Chen et al. [20] in case

of location regressions.

Proof of Corollary 4.6

Since idY forms a complete orthonormal system of HY , we have

Tr(ΣY Y |XS ) = ⟨idY ,ΣY Y |XS idY⟩HY = inf
f∈H

EX,Y ((Y − EY [Y ])− (f(XS)− EXS [f(XS)]))
2

by Proposition 4.2, where the RHS equals to the variance of Y − f(pS(X)). Since HS is dense in C(∆m)

with uniform convergence norm by universality, we have

Tr(ΣY Y |XS ) = inf
f∈C(∆m)

VarX,Y [Y − f(pS(X))].

Proof of Theorem 4.7

We first state the following uniform convergence result:

Proposition 4.8. If ϵn satisfies the asymptotic behavior given in Theorem 4.7,

sup
|S|≤m

∣∣∣Tr(Σ̂(n)
Y Y |XS

)− Tr(ΣY Y |XS )
∣∣∣→ 0

as n→ ∞ in probability.
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As usual, this uniform convergence implies that the limit of minimums converges to the minimum

of the limits:

Proof of Theorem 4.7 given Proposition 4.8. Let ϵ > 0 be a positive real number. There exists a large

number N > 0 such that∣∣∣Tr(Σ̂(n)
Y Y |XS

)− Tr(ΣY Y |XS )
∣∣∣ < ϵ

2
for all |S| ≤ m and for all n ≥ N

with probability ≥ 1− ϵ. Let S ′ ∈ S be any global optimum. Then by definition of Ŝ(n) we have

Tr
(
Σ̂

(n)
Y Y |XŜ(n)

)
≤ Tr

(
Σ̂

(n)
Y Y |XS′

)
≤ Tr

(
ΣY Y |XS′

)
+
ϵ

2

and thus ∣∣∣Tr(ΣY Y |XŜ(n)

)
− Tr

(
ΣY Y |XS′

)∣∣∣ ≤ Tr
(
ΣY Y |XŜ(n)

)
− Tr

(
Σ̂

(n)
Y Y |XŜ(n)

)
+
ϵ

2
< ϵ

with probability ≥ 1 − ϵ (here, we use the uniform convergence twice). This concludes the desired

convergence in probability.

Note that the proof of Proposition 4.8 requires only pointwise convergence due to discreteness; i.e.,

it suffices to show pointwise convergence for each S. This fact makes proof considerably simpler than

originally given in Chapter 3. Proof of such a pointwise convergence can similarly be derived as we have

done in Section 3.6.
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Chapter 5. Dimension Reduction for Compositional Data

with Interpretable Compositional Outcomes

5.1 Introduction

Compositional data, characterized by nonnegative proportions of variables to a whole, are ubiquitous

in various scientific domains, including geochemistry, economics, and microbiology. As the numerical val-

ues of variables represent only relative, not absolute, information, they are normalized to a d-dimensional

unit simplex:

∆d−1 =

{
(x1, . . . , xd)

T ∈ Rd
∣∣∣∣ d∑
i=1

xi = 1, xi ≥ 0, ∀i

}
.

Recently, the surge of human microbiome studies has significantly promoted the research on com-

positional data analysis. The human microbiome consists of all microorganisms, such as bacteria and

viruses, living in or on the human body. They are shown to be closely associated with various human

health and diseases [49], including obesity [118, 125], diabetes [61], inflammatory bowel disease [36],

and cancer [40, 102]. They are commonly obtained by employing modern high-throughput sequencing

technologies, such as 16S ribosomal RNA sequencing [21] and shotgun metagenomic sequencing [85],

resulting in raw count numbers of microbiomes. Because the total number of counts varies vastly across

the samples, microbiome data are normalized and viewed as compositional [37]. The microbiome com-

positional data obtained in this manner present high dimensionality and extreme sparsity; that is, the

number of variables mostly outnumbers the number of samples, and the data contain a large proportion

of zeros.

In high-dimensional data analysis, dimension reduction is always one of the most relevant tasks

as it alleviates the curse of dimensionality. Furthermore, in biological applications, it is crucial to

have interpretable analysis results that can be explained by original variables. Despite its importance,

however, existing approaches to dimension reduction of compositional data lack clear interpretability.

For microbiome data, a popular method, principal coordinate analysis (PCoA) with microbiome-specific

measures of dissimilarity (e.g. Bray-Curtis, UniFrac), produces some appealing visualizations, but they

are not described by original variables.

Such an interpretability issue also is not resolved in general compositional data analysis approaches.

Classically, compositional data analyses have primarily been conducted within the framework of log-ratio

transformation [3] to address the spurious negative correlation [84] arising from the unit-sum constraint.

A broad class of linear dimension reduction methods may apply after log-ratio transformations, includ-

ing principal component analysis [4] and linear discriminant analysis [29]. Then, the resulting lower

dimensional coordinates are described by linear combinations of log-ratio transformed variables, which

have some interpretations but are not clearly interpretable than a simple linear combination of variables.

Furthermore, it is challenging to understand the interactions between these unclear lower dimensional

coordinates, although they are orthogonal in the transformed Euclidean space.

Besides the interpretability, the log-ratio transformations, in fact, have severe defects. As log-

ratio-based approaches cannot compute zero values in data, they require zero replacements followed by

renormalization. Although this procedure with high-dimensional statistical machinery seems to provide

adequate approaches to high-dimensional compositional data analysis [63, 108], there is a crucial flaw:
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data itself being significantly distorted in this procedure (Chapter 2). Another drawback of log-ratio

transformations arises with the linear models after transformation, mostly based on the log-contrast

model [7]. Such models are commonly assumed in the literature [103, 104], but they are incompatible

with amalgamation, one of the most natural operations of compositional data [83]. Amalgamation is

an aggregation procedure using similarity information of variables; for instance, (x1 + x2, x3 + x4) is

an amalgamation of (x1, x2, x3, x4). Such an operation is pervasive in microbiome data processing:

variables are aggregated based on their genetic hierarchical structure to reduce the number of variables

and the sequencing error [59]. Therefore, linear model-based approaches after log-ratio transformations

do not consistently model this common practice; i.e., data analysis results may differ across the different

taxonomic aggregation levels.

In this chapter, we address all these issues with our new interpretable dimension reduction frame-

work of compositional data, as well as our algorithm that does not rely on log-ratio transformations. Our

proposed framework will generalize the amalgamation of compositional data, focusing on its intuitive

nature; it simply aggregates similar variables. Although amalgamation has not been of great interest

to researchers due to incompatibility with log-ratio methods, very recently, a few amalgamation-based

compositional data analysis approaches have emerged in the literature. They commonly articulate the

intuitive nature of the amalgamation in practice, while some approaches still rely on log-ratio transfor-

mations so that they suffer from zero problems [41, 43]. Furthermore, we will argue in Section 5.2.1

that amalgamation has a crucial property, preservation of relative information to the total, making it

an essential choice for an interpretable dimension reduction framework. However, despite the intuitive

nature and the crucial property, approaches to finding desirable amalgamation encounter some practical

challenges: the aggregating operation is too rigid and discrete. Such discreteness poses two problems:

it cannot incorporate weak similarity structures, and finding an optimal amalgamation leads to a com-

putationally infeasible discrete optimization problem. Quinn and Erb [86] formulated an optimization

problem of amalgamation, but their proposed genetic algorithm is suboptimal and computationally in-

tensive. Li et al. [58] proposed a novel regression framework with amalgamation-encouraging penalties;

nevertheless, their model is confined to linear regression models, and the resulting amalgamation may

only capture linear functional similarities.

To solve these rigidity problems and enhance their flexibility, we propose to generalize the amal-

gamation operation from a combinatorial perspective. By intuitively relaxing such a discrete operation

continuously, we will see in Section 5.2.2 that our proposed framework forms another natural class of

dimension reductions for compositional data. The generalized framework will also be clearly described

by the original variables. Furthermore, during the generalization, our framework preserves two essential

aspects of compositional data: it keeps the relative information of the quantities to the total, and the

resulting dimension reduction is compositional data again. It should be noted that the latter property

automatically provides a solution to the problem of interaction interpretability because compositional

data are naturally defined by relative information, which is simply information on interactions between

variables. In addition, our composition-to-composition framework provides a new visualization approach

to high-dimensional compositional data. We will mainly describe this application in Section 5.5 through

real data experiments. The analysis of our visualization will further demonstrate the distinctive and

attractive interpretations of our new approach.

To achieve desirable dimension reduction within our framework for compositional data, we propose

to generalize the kernel dimension reduction (KDR) approach of Fukumizu et al. [34]. As mentioned in

Chapter 2, using kernels adequately deals with prevalent zero values in compositional data and thus does
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not rely on log-ratio transformations. The generalized KDR approach is model-free and aims for sufficient

dimension reduction, and we will introduce a detailed context of why we chose this approach in the

following subsection 5.1.1. Having defined the class of generalized compositional dimension reductions,

we prove that the empirical estimator for our dimension reduction is consistent, as initially proved using

properties of orthogonal matrices in Fukumizu et al. [34]. Our generalization is applicable also for

unsupervised problems, as suggested by Wang et al. [121]. We should also emphasize that, though we

focus only on the dimension reduction of compositional data, our generalized KDR approach and its

theoretical guarantee are not limited to compositional data and show great generality. It could be an

interesting research direction to explore other application possibilities.

5.1.1 Sufficient Dimension Reduction and Related Works

Sufficient dimension reduction (SDR), proposed originally by Li [60] with the sliced inverse regression

(SIR) approach, aims for the conditional independence relation Y ⊥⊥ X |BTX, where X is a vector of

d covariates, Y is a response, and B is an m × d matrix with orthonormal rows and m ≤ d. Note that

this framework no longer applies to compositional data, as orthogonal projections break the proportional

structure of data. Lee et al. [53] extensively generalized this framework to arbitrary projection functions

p, so the target relation becomes Y ⊥⊥ X | p(X). If we put our compositional dimension reduction

function p : ∆d−1 → ∆m−1, which will be defined in Section 5.2.2, to this relation, we obtain an intuitive

interpretation within the SDR framework: the target function p reduces dimension via aggregating

variables based on their functional similarity.

To achieve this compelling dimension reduction of compositional data, we need a method that

fulfills two requirements: it can adequately deal with zero values and adapt to our specifically designed

interpretable projection functions. Most classical linear SDR methods (see Li [55] for various examples)

are confined to finding linear subspaces, so they do not apply directly to compositional data. Lee et al.

[53] proposed two nonlinear SDR methods, generalized sliced inverse regression (GSIR) and generalized

sliced average variance estimator (GSAVE), but these methods find general nonlinear functions in Hilbert

spaces and break interpretations of variables, even though they can be applied to compositional data

without replacing zeros. In contrast, the KDR method shows adaptability to other specifically structured

functions by replacing their Stiefel manifold optimization with other classes of specific functions. It is also

capable of dealing with zeros appropriately, as discussed before. Therefore, we approach our dimension

reduction framework in this chapter by expanding the ability of the KDR method.

Recently, Tomassi et al. [117] proposed a likelihood-based inverse regression approach to SDR for

compositional data. They gave both log-ratio and non-log-ratio methods, where the former requires zero

replacements, and the latter applies to the count data before normalization. The latter method does not

require zero replacements, but the orthogonal projections of the original count data do not account for

the compositional nature. We compare our proposed method and their approach in Section 5.5.

5.1.2 Main Contribution

The contribution of this chapter is three-fold: (1) we propose a new interpretable composition-to-

composition dimension reduction framework as a generalization of amalgamation. The compositional

outcome naturally addresses interactions between lower dimension coordinates; (2) to achieve desirable

dimension reduction within our framework, we extensively generalize the KDR method to arbitrarily

structured dimension-reducing functions and prove the consistency of the empirical dimension reduction
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estimator. We also refine the assumptions of the consistency theory originally given in Fukumizu et al.

[34], showing that our theory successfully generalizes to broader settings under milder assumptions

than originally given; (3) through the experimental results, we showcase that our method provides a new

compelling data visualization tool for compositional data through the ternary plot. With the information

on the dimension reduction estimate, our analysis gives a clear, intuitive explanation in terms of the

original variables.

5.1.3 Outline of the Chapter

In Section 5.2, we propose our dimension reduction framework for compositional data by general-

izing the amalgamation with an emphasis on its information-preserving property. To achieve our new

compositional dimension reduction, Section 5.3 first extends the ability of the KDR method to a broader

class of dimension reduction functions and then applies it to our compositional framework. Section 5.4 is

an independent section of compositional data that describes the theoretical guarantee of our generalized

KDR estimator. We conduct real data experiments in Section 5.5, which showcases that our method pro-

vides an excellent new graphical exploration tool for compositional data. Finally, we discuss conclusions

and fruitful directions for future works in Section 5.6.

5.2 Composition-To-Composition Dimension Reduction Frame-

work

While many typical operations of Euclidean data are not applicable to compositional data, there are

two natural dimension-reducing operations called subcomposition and amalgamation [3]. In this section,

we explore the crucial property of amalgamation and advocate using amalgamation for dimension reduc-

tion. Then, as the strict amalgamation is too rigid and unwieldy, we propose a generalized framework

for dimension reduction for compositional data that includes amalgamation.

5.2.1 Amalgamation and Relative Information to the Total

In the pioneering work of Aitchison [3] on compositional data, he introduced two fundamental

dimension-reducing operations of compositional data: subcomposition and amalgamation. The subcom-

position is a simple variable selection process that performs renormalization after selection of variables.

Amalgamation is an aggregation-based dimension reduction process of compositional data, which is in-

tuitive and very common in practice. Given a compositional data x ∈ ∆d−1 and a fixed-order partition

P = {I1, . . . , Im} of variable indices {1, . . . , d}, we have a partition-based aggregation

xP :=

(∑
j∈I1

xj , . . . ,
∑
j∈Im

xj

)
∈ ∆m−1,

called the amalgamation of x with respect to the partition P . Such a partition P is typically formed

based on extrinsic information of similarity, such as phylogenetic tree for microbiome data. However,

the genetic similarity may not exactly indicate the functional similarity of taxa, which is often a crucial

objective of microbiome data analysis. Thus, it is desirable to have a data-driven approach to figure out

an appropriate partition P that aggregates compositional covariates via functional similarity.

Apart from its interpretability, we also argue an essential and crucial property of the amalgamation,

preservation of relative information to the total, which was originally pointed out by Park et al. [81].
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Although it is common to perform renormalization after various operations of compositional data [3], we

demonstrate that such a process produces a significant issue by considering the following toy microbiome

data example. Let X = (X1, X2, X3, X4) ∈ ∆3 be a compositional vector with four taxa, and let

Y ∈ {0, 1} be a binary response variable indicating the presence of a disease. Assume that the deficiency

of two taxa X1 and X2 causes the disease, and let (x, 1) and (x′, 0) be two samples from (X,Y ) with

x = (0.01, 0.02, 0.4, 0.57), and x′ = (0.3, 0.6, 0.05, 0.05).

Since the rest of the taxa X3 and X4 do not directly affect the disease, one might be tempted to

select the first two taxa X1 and X2 and form a subcomposition. However, after renormalization, the

subcompositions of x and x′ on the first two variables become the same value (1/3, 2/3) ∈ ∆1 with the

different disease labels, which precludes the further analysis based on this variable selection. This problem

arises essentially due to the following phenomenon: renormalization erases the relative information of

variables to the total, which is also a significant feature of data.

In contrast, amalgamation does not require a renormalization process, so it does not lose the relative

information to the total during the dimension reduction. The problem of variable selection above is also

solved using amalgamation, where the resulting selection should be represented as (0.01, 0.02, 0.97) and

(0.3, 0.6, 0.1) by aggregating the rest variables into one coordinate.

In terms of dimension reduction, keeping the relevant data information is extremely important, so we

develop our dimension reduction approach based on amalgamation. The following subsection will devise

a new dimension reduction framework for compositional data, still not requiring the renormalization

process.

5.2.2 Generalized Amalgamation of Compositional Data

As formulated by Quinn and Erb [86], the set of all amalgamations from ∆d−1 to ∆m−1, m ≤ d,

can be represented as the following collection of binary matrices

Am,d :=

{
A = (aij) ∈ Rm×d

∣∣∣∣ aij ∈ {0, 1},
m∑
i=1

aij = 1,∀j = 1, . . . , d

}

with the linear operation, Ax ∈ ∆m−1 for all A ∈ Am,d and x ∈ ∆d−1. Letting ei ∈ ∆m−1 as the standard

basis vectors, all zeros but one at the i-th coordinate, we may describe all the elements A ∈ Am,d as

A = (ea(1), . . . , ea(d)), where a : {1, . . . , d} → {1, . . .m} is a function. For example, if A = (e1, e1, e2, e3) ∈
A3,4, then Ax = (x1 + x2, x3, x4) for x ∈ ∆3. This operation makes sense if two variables x1 and x2 are

strongly similar : e.g. if they are linearly correlated, meaning that the ratio (x1 : x2) is constant, or if

Y = f(X1, X2, X3, X4) = g(X1 +X2, X3, X4) for some functions f, g and a response Y .

However, we argue that this discrete operation is too strict and rigid, producing limitations in both

theoretical and practical viewpoints. For example, consider a similar case in which X2 weakly affects

Y , and its weak effect is linearly correlated with X1. This may incorporate the case X ∈ ∆3 and

Y = f(X1, X2, X3) = g(X1 + cX2, X3) for some functions f, g and a constant c ∈ (0, 1), where X4

indirectly affect Y via the unit-sum constraint. This type of weak similarity structure is also conceivable

in practice, but amalgamation does not capture this relation. There is an additional computational

challenge of finding optimal amalgamations A ∈ Am,d because the cardinality of the class Am,d is md,

which is infeasible for high-dimensional datasets. Quinn and Erb [86] proposed distance-based discrete

optimization problems for amalgamation, approached via genetic algorithms, but its performance is

suboptimal, and computation tends to be extremely intensive.
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Figure 5.1: Illustrations of the amalgamation and our generalized framework of compositional dimension

reduction. The left image shows the amalgamation A = (e1, e1, e3, e1, e4, e4) ∈ A4,6, and we can interpret

this as each xj is strictly allocated to one of the zi. The right image visualizes how we can generalize

such a discrete allocation continuously. The blue lines indicate x1 is distributed to the target variables,

whereas the blue arrow in the left image indicates a strict allocation.

To circumvent these issues of amalgamation, we propose a new framework of compositional dimen-

sion reduction, continuously relaxing the discrete process of amalgamation. In a combinatorial perspec-

tive, amalgamation can be viewed as strict allocations of the original variables to the target composi-

tional variables. The left image of Figure 5.1 illustrates this idea in case A = (e1, e1, e3, e1, e4, e4) ∈ A4,6.

Here, each xj is allocated to one of the coordinates ei with the value xj , resulting in the amalgamation

Ax = (x1+x2+x4, 0, x3, x5+x6) ∈ ∆3 after summing up all the allocations. From this viewpoint, we may

readily think of adopting a probabilistic perspective. That is, we may distribute the original quantities

xj to all the target coordinate, resulting in xj · pj ∈ xj ·∆3, where pj = (p1j , p2j , p3j , p4j)
T ∈ ∆3. This

distribution is illustrated in the right hand side of Figure 5.1. Summing up all these distributions, we

have a matrix representation of this operation x 7→ Px, where P = (pij) satisfies ∀pij ≥ 0 and
∑
i pij = 1

for all j.

We summarize this generalized framework as the following class for general dimensions (m ≤ d),

Mm,d =

{
P = (pij) ∈ Rm×d

∣∣∣∣ 0 ≤ pij ≤ 1,

m∑
i=1

pij = 1,∀j = 1, . . . , d

}
. (5.1)

It is immediately checked that Px ∈ ∆m−1 for all compositions x ∈ ∆d−1, thus Mm,d forms a class of

composition-to-composition dimension reductions, ∆d−1 → ∆m−1. It also does not require renormaliza-

tion and, therefore, does not suffer the information loss problem described in Section 5.2.1. From our

discussions, we note that each column Pj of P ∈ Mm,d represents how the j-th variable xj is distributed

into the lower dimensional coordinates. Also, if the matrix P is binary, it represents an amalgamation.

Therefore, we have clear interpretability for our compositional projection matrices P ∈ Mm,d, similar

to amalgamation when the columns are nearly binary. We will see in Section 5.5 that this perspective

provides an unprecedented visualization of compositional data and its interpretations.

We conclude this section with mentioning a related work on compositional data analysis. Our class
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(5.1) also appears in the work of Fiksel et al. [28], where they proposed a linear method for composition-

on-composition regression. They focused on the linear regression framework E[Y |X] = PX, where both

X,Y are compositional, and they derived that P must be of the form (5.1) as ours. In contrast, we started

from amalgamation to achieve dimension reduction and generalized the framework with interpretability.

Thus, there are crucial differences in motivations and the tasks, while it is interesting that two different

goals approached to the same operation of compositional data.

5.3 Compositional Dimension Reduction with Generalized KDR

As mentioned in Section 5.1.1, we take an SDR approach to achieve desirable compositional dimen-

sion reduction within the framework (5.1). Since the projections of Mm,d are interpreted as continuously

relaxed aggregations of variables, the SDR relation Y ⊥⊥X |PX indicates a relaxed amalgamation based

on the functional similarity between covariates. We propose to generalize the KDR method [34] to

achieve this relation, and we begin with some preliminary notions and results.

5.3.1 Conditional Covariance Operator

Let (X,Y ) ∈ X × Y be a random vector with joint distribution PXY , where X and Y are compact

domains. Since our domain X will be a compact simplex, it is also reasonable to confine the domain Y
of responses to be compact. Let kX and kY be continuous kernels generating reproducing kernel Hilbert

spaces (RKHSs) HX and HY on X and Y, respectively. As the kernels are continuous, the RKHSs HX

and HY are embedded in the space of continuous functions C(X ) and C(Y), respectively.

The cross-covariance operator of (X,Y ) is a mapping ΣY X : HX → HY defined uniquely by the

following adjoint relations,

⟨g,ΣY Xf⟩HY = EX,Y [(f(X)− EX [f(X)]) (g(Y )− EY [g(Y )])] <∞

= Cov [f(X), g(Y )] ,
(5.2)

for all f ∈ HX and g ∈ HY . We call ΣXX a covariance operator in case Y = X. Note that the operator

ΣY X captures all the covariances between RKHS evaluations of X and Y . Baker [9] showed that there

is also a correlation-analogue, a unique bounded operator VY X : HX → HY satisfying

ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX , ∥VY X∥ ≤ 1, and VY X = Pran(ΣY Y )VY XPran(ΣXX), (5.3)

where ran(Σ) denotes the closure of the range of the operator Σ, and PW denotes the orthogonal pro-

jection onto the subspace W of a Hilbert space.

Based on these concepts, the conditional covariance operator on HY is defined by

ΣY Y |X = ΣY Y − Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y , (5.4)

which coincides with ΣY Y − ΣY XΣ−1
XXΣXY if the covariance operator ΣXX is invertible. This notion

generalizes the conditional covariance matrix of Gaussian random vectors, and Fukumizu et al. [34]

demonstrated that computational properties of joint Gaussian variables also generalize to RKHS opera-

tors.

Proposition 5.1 ([34, Propositions 2 and 3]). For any g ∈ HY , we have

⟨g,ΣY Y |Xg⟩ = inf
f∈HX

Var(g(Y )− f(X)). (5.5)
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If HX + R is dense in L2(PX), we further have

⟨g,ΣY Y |Xg⟩HY = EX [VarY |X [g(Y )|X]]. (5.6)

Hence, the conditional covariance operator indeed captures the (expected) conditional variance of

evaluations g(Y ) given X, for all g ∈ HY , whenever HX +R is dense in L2(PX). Such a density constraint

is equivalent to saying that the RKHS HX is rich enough, and this is satisfied by various kernels kX , such

as characteristic and universal kernels [34, Proposition 5]. An RKHS (HX , kX ) is said to be characteristic

if the corresponding kernel mean embedding of probability measures on X , P 7→ EX∼P[kX (·, X)], is one-

to-one. It is called universal if HX is dense in C(X ) with the uniform topology. It is known that all

universal kernels are characteristic [45], and a broad class of popular kernels, such as Gaussian and

Laplace, are universal on compact subsets of Euclidean space.

5.3.2 Generalized Kernel Dimension Reduction

We present the generalized theory of kernel dimension reduction in this subsection. Although the

original method is developed for orthogonal matrices and exploits some unique properties of orthogonality,

its central intuition, minimizing conditional covariance approaches the conditional independence relation

of the SDR, generalizes to dimension reduction functions of arbitrary form. We expand the potential

power of the KDR method to a broader domain by stating our theory in a fully general language, not

confined to compositional data.

Assume that X ⊂ Rd is a compact domain of predictors and let Z ⊂ Rm, m ≤ d, be a target

compact domain of dimension reduction on which another RKHS (HZ , kZ) is given. We state the

following theorem with all arbitrary measurable maps p : X → Z, and its proof is available in Chapter 3.

Theorem 5.2. Suppose that (HX , kX ) is dense in L2(PX) (e.g., kX is universal), and let Z = p(X),

where p : X → Z is a measurable map. Then,

ΣY Y |Z ⪰ ΣY Y |X , (5.7)

where the inequality ⪰ stands for the partial order of self-adjoint operators. If we further assume that

(HZ , kZ) and (HY , kY) are characteristic, then

the equality ΣY Y |Z = ΣY Y |X holds if and only if Y ⊥⊥X |Z.

The proof of the original version [32, 34] of Theorem 5.2 uses the property of the matrix B ∈ Rd×m

with orthonoral columns: the columns can be extended to an orthonormal basis of Rd so that X can

be decomposed into two parts, BTX and its complementary part. In contrast, we show that such a

decomposition property is not actually needed by adopting σ-field languages of conditional expectations

[26].

Applying the operator trace to the relation (5.7), we have Tr(ΣY Y |p(X)) ≥ Tr(ΣY Y |X) for all p with

Tr(ΣY Y |p(X)) = Tr(ΣY Y |X) if and only if Y ⊥⊥ X | p(X). Therefore, the generalized KDR algorithm

will perform minimization of Tr(ΣY Y |p(X)) among the dimension reduction functions p of interest. For

a particular class F of functions p : X → Z, which may be the Stiefel manifold of Fukumizu et al. [34]

or our compositional class Mm,d, the population algorithm is written as

argmin
p∈F

Tr(ΣY Y |p(X)). (5.8)
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To ensure this solution set nonempty, we will assume F is a compact metric space and prove in Section 5.4

that p 7→ ΣY Y |p(X) is continuous under weak continuity constraints on F .

When we focus on the trace of conditional covariance operators directly, we may derive a similar

result in the special case of idY ∈ HY , where id denotes the identity function. This case includes the

univariate responses Y ⊂ R with the linear kernel kY(y, y
′) = yy′, which is not characteristic. The

following result compromises little theoretical power but computationally attractive, which generalizes

Corollary 3 of Chen et al. [20] with conceptual corrections.

Proposition 5.3. Let (HX , kX ), p : X → Z, and Z = p(X) as in Theorem 5.2. Suppose that (HZ , kZ)

is characteristic and idY ∈ HY . Then we have Tr(ΣY Y |Z) ≥ Tr(ΣY Y |X) with the equality Tr(ΣY Y |Z) =

Tr(ΣY Y |X) holds if and only if E[Y |X] = E[Y |Z] almost surely.

Here, the equality E[Y |X] = E[Y |p(X)] means that knowing p(X) suffices for predicting Y . This is a

general version of sufficient dimesion reduction for conditional mean [22, 55] that is slightly weaker than

the actual SDR, whereas Chen et al. [20] stated that this is equivalent to SDR. However, it suffices for

many practical applications as our primary interest is often estimating the regression function E[Y |X],

rather than the entire distribution PY |X .

We also mention an application of Theorem 5.2 for unsupervised dimension reduction problems as

proposed in Wang et al. [121]. Letting Y = X and Y = X, we approach the following independence

relation by solving the optimization (5.8):

X ⊥⊥ X̃ | p(X), (5.9)

where X̃ is an i.i.d. copy of X. We may further investigate this relation as follows. Letting Z = p(X), the

independence relation (5.9) is equivalent to the inclusive relation of σ-fields σ(X) ⊆ σ(Z) [50, Corollary

8.11], where σ(Z) denotes the completion of σ(Z) with respect to the ambient σ-field of the probability

space. Since then σ(X) = σ(Z) holds clearly, we interpret (5.9) as E[Y |X] = E[Y |p(X)] almost surely

for all integrable random variables Y .

5.3.3 Estimating the Generalized KDR and Computational Aspects

Estimating the solution functions of the optimization problem (5.8) requires first to estimate the

objective function, Tr(ΣY Y |p(X)). Let (x1, y1), . . . , (xn, yn) ∈ X × Y be sampled i.i.d. from the joint

distribution PXY . By adopting a Tikhonov-type regularization for the operator inversion of Σp(X)p(X) :

HZ → HZ , we have a similar result of empirical estimate as computed in Fukumizu et al. [34]:

Tr(Σ̂
(n)
Y Y |p(X)) = εnTr((Gp(X) + nεnIn)

−1GY ),

where εn is a regularization parameter converging to zero as n → ∞, Σ̂
(n)
Y Y |p(X) : HY → HY is the

empirical conditional covariance operator, Gp(X) is the centered Gram matrix of kernel kZ with the

projected data {p(xi)}ni=1, and GY is the centered gram matrix of kY . Since we differently derive

our estimate without pulling back the RKHS HZ to the Hilbert space defined on X , we give detailed

computations in Section 3.5.

Letting F be any class of functions p : X → Z as defined in (5.8), we formulate our empirical

estimate for the generalized KDR as

argmin
p∈F

Tr(Σ̂
(n)
Y Y |p(X)) = argmin

p∈F
Tr((Gp(X) + nεnIn)

−1GY ). (5.10)
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We will establish the large sample theory and consistency of the estimator (5.10) in Section 5.4. We

also have another form of Tr(Σ̂
(n)
Y Y |p(X)) by directly computing the trace of the operator Σ̂

(n)
Y Y |p(X) using

a complete orthonormal system (CONS) for HY . An interesting case of this direction is Y ⊂ R with

the linear kernel kY , where the RKHS HY = R∨ is spanned by the identity function idY . In this case,

assuming the {yi} are centered, we may write

Tr(Σ̂
(n)
Y Y |p(X)) = inf

f∈HZ

1

n

n∑
i=1

[
yi −

(
f(p(xi))−

1

n

n∑
j=1

f(p(xj))

)]2
+ εn∥f∥2HZ

, (5.11)

which resembles the minimized loss function of the kernel ridge regression (KRR) after projection by

p ∈ F . Therefore, we can intuitively regard the optimization (5.10) as seeking a function p ∈ F that

minimizes the KRR residual error after projection.

To compute the objective function Tr((Gp(X) + nεnIn)
−1GY ), we should specify the kernels kZ

and kY that may involve two parameter choice problems. Fortunately, the kernel choice for kY can be

significantly simplified in numerous practical problems. When given a multi-class response problem,

Y = {y(1), . . . , y(k)}, the delta kernel

kY(y, y
′) := δy,y′ =

1 if y = y′

0 otherwise

is a natural choice as it treats different labels as completely dissimilar. It is commonly adopted in

various supervised kernel methods [107, 20, 11], and there is also experimental support that the delta

kernel empirically outperforms Gaussian kernels in other approaches [126]. The delta kernel is universal,

so Theorem 5.2 applies. In case Y is a univariate continuous response, Y ⊂ R, we take kY as the linear

kernel and aim for the SDR for conditional mean, as discussed after Proposition 5.3. Thus, in these

circumstances, we only need to decide the kernel parameter for kZ , which we will discuss in Section 5.5

in detail.

The computational complexity of the dimension reduction objective Tr((Gp(X) + nεnIn)
−1GY ) is

O(nl + n2m + n3), where l denotes the complexity of computing each projection p(X), assuming that

computing kZ(p(xi), p(xj)) requires O(m) operations. Recall that m is the dimension of the target

domain Z. The dominant term O(n3) arises from the matrix inversion, and one may consider reducing

this by low-rank approximations for kernel matrices, such as random Fourier features [87] or the Nyström

method [24]. Since microbiome datasets in practice, which are of our primary interest, typically have a

small sample size (mostly n < 1000), we do not take this approach in this thesis.

5.3.4 Dimension Reduction Algorithm for Compositional Data

With all of these extended theories and empirical computations in hand, we return to our main goal,

the interpretable dimension reduction of compositional data. We set X = ∆d−1 and Z = ∆m−1, and

recall that our class of dimension reduction functions was

Mm,d =

{
P = (pij) ∈ Rm×d

∣∣∣∣ 0 ≤ pij ≤ 1,

m∑
i=1

pij = 1,∀j = 1, . . . , d

}
,

where P ∈ Mm,d sends x ∈ ∆d−1 to Px ∈ ∆m−1. Then, the generalized KDR algorithm (5.10) translates

into the compositional case as

argmin
P∈Mm,d

Tr((GPX + nεnIn)
−1GY ). (5.12)
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We will use the Gaussian kernel for kZ to satisfy the requirements of Theorem 5.2 and Section 5.4.

Then, (5.12) is a matrix optimization problem, which can be optimized by projected gradient descent.

Note that each column Pj of P ∈ Mm,d is a member of the simplex ∆m−1, so the class Mm,d equals

to a d-product of simplices ∆m−1 × · · · × ∆m−1. Hence, we can compute the orthogonal projection of

an arbitrary matrix Q ∈ Rm×d to the set Mm,d via column-wise application of simplex projections,

proposed by Duchi et al. [25].

While the projected gradient descent applies to the problem (5.12), it is a nonconvex optimization

since the solution matrices exhibit symmetry. That is, if P̂ is a solution of (5.12), then all the row

permutations of P̂ are also contained in Mm,d and minimizes the objective, and this problem occurs also

at the population level. Such a symmetry problem is common in deep neural networks and approached

by random initializations [38, 47]. We similarly propose to randomly initialize each column of P ∈
Mm,d by sampling from the uniform distribution on the simplex ∆m−1 to break the symmetry. The

nonconvexity also naturally occurs from the Gram matrix GPX . Nevertheless, we empirically see that

projected gradient descent with random initialization finds a dimension reduction matrix with attractive

performance, as will be observed in Section 5.5.

Though we do not proceed further in this thesis, one can similarly approach the unsupervised

dimension reduction problem by solving the optimization

argmin
P∈Mm,d

Tr((GPX + nεnIn)
−1GX) (5.13)

with a characteristic kernel kX on X = ∆d−1. Wang et al. [121] suggested that this type of objective func-

tion is asymptotically similar to the dependence maximization objective based on the Hilbert-Schmidt

independence criterion (HSIC), which is computationally more efficient. However, their argument is

confined to uniform distributions of X in the sphere as they exploit rotational symmetry. Furthermore,

in general, Liu and Ruan [64] recently proved that such an HSIC-based optimization fails to achieve

the SDR relation for the class F of variable selections, whereas our generalized KDR approach has the

theoretical guarantee at the global optimums, as will be seen in the next section.

5.4 Theory of the Generalized KDR Estimator

In this section, we prove that the empirical estimator of our compositional dimension reduction is

statistically consistent. Again, to fully describe potentials of our generalized KDR theory, we state all

results with a general class F of functions p : X → Z of compact spaces, where X ⊂ Rd and Z ⊂ Rm.

Recall that we assumed Y also a compact domain of responses. Remarkably, our generalized theory

does not require any stringent assumptions except for some continuity assumptions on F that make

optimization at least computable. For completeness of this chapter, we repeat some arguments already

stated in Section 3.6.1.

Throughout the section, we assume F is equipped with a metric ρ, making F a compact metric

space. Since our ultimate interest is the evaluations of an estimated solution p̂ ∈ F but not p̂ itself, we

naturally impose the following assumption:

Assumption 5.1. For every x ∈ X , the evaluation functional at x, p 7→ p(x) is continuous on F .

The following two assumptions are also needed to guarantee the consistency of (5.10):

83



Assumption 5.2. There exists a measurable function φ : X → R satisfying E[φ(X)2] < ∞ and the

Lipschitz condition

∥kZ(p1(x), ·)− kZ(p2(x), ·)∥HZ
≤ φ(x) ρ(p1, p2)

holds for all x ∈ X and p1, p2 ∈ F .

Assumption 5.3. For each y ∈ Y, the conditional probability density function fX|Y (x|y) of X|Y = y

exists, and it is continuous in x, bounded in y, and measurable in y.

Assumption 5.1 is clearly satisfied by a broad class of parametric families, including the Stiefel

manifold and our compositional family Mm,d. It also guarantees that the empirical solution set

argmin
p∈F

Tr((Gp(X) + nεnIn)
−1GY )

is nonempty.

Assumption 5.2 plays a crucial role in proving uniform convergence of the empirical operator

Σ̂
(n)
Y Y |p(X) on F . It is an extended version of the assumption (A-3) of Fukumizu et al. [34] for our

broader setting. This is satisfied when, for instance, F satisfies an additional continuity assumption and

kZ is an l2-radial kernel with the Lipschitz continuity; that is, for some C > 0 and h : R → R, we have

kZ(z1, z2) = h(∥z1 − z2∥2) and |h(s)− h(t)| ≤ C|s− t| for all s, t ∈ R. To see this, observe that

∥kZ(p1(x), ·)− kZ(p2(x), ·)∥2HZ
= 2h(0)− 2h(∥p1(x)− p2(x)∥2)

≤ 2C∥p1(x)− p2(x)∥2

for all p1, p2 ∈ F . Therefore, if there is a function ψ on X such that ∥p1(x) − p2(x)∥ ≤ ψ(x)ρ(p1, p2),

i.e., the evaluation functional at x is also Lipschitz continuous on F with the constant ψ(x), we ob-

tain a similar form to Assumption 5.2. In particular, the Gaussian kernel satisfies this condition, and

the Stiefel manifold or our class Mm,d satisfies the Lipschitz condition. Although this case subsumes

Assumption 5.1, we separated it because other theories only require continuity of the evaluations.

We may feel free to accept Assumption 5.3. It is satisfied by a broad range of probability distributions

even if the random variable Y is discrete. In fact, Assumption 5.3 refines the assumption (A-1) of

Fukumizu et al. [34], where they originally assumed that the following mapping

p 7→ E[E[g(Y )|p(X)]2] (5.14)

is continuous on F for all g ∈ HY , in case F is a Stiefel manifold. They justified their assumption via

exploiting unique properties of orthogonal projections, whereas we prove the continuity of (5.14) with a

full generality, elaborated in Section 3.6.3. Since the continuity of (5.14) is not a clear fact that can be

accepted without doubt (see Ackerman et al. [1] for counterexamples when Y is discrete), we replace the

original assumption and prove the continuity for clarity.

On the other hand, we emphasize that we removed the assumption (A-2) of Fukumizu et al. [34]

since it can be weakened and subsumed to our almost fixed assumption that HZ is characteristic. See

Section 3.6.2 and Section 3.6.3 for detailed demonstrations.

Finally, under Assumptions 3.1-3.3, we have the desirable consistency result in our expanded frame-

work:

Theorem 5.4. Suppose that (HZ , kZ) is characteristic, and that the regularization parameter ε in (3.21)

satisfies

εn → 0 and n1/2εn → ∞ as n→ ∞. (5.15)
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Figure 5.2: Visualization of the dimension reduction result of the skin microbiome data into three

variables, Z1 to Z3. The dashed line indicates the set of points with Z2 = Z3. Except one possible

outlier in pre-menopausal samples, the menopausal status is discriminated by the relative ratio between

Z2 and Z3.

Let p̂(n) be a member of the nonempty empirical solution set (3.21). Then, the set of optimal population

solutions, argminp∈F Tr(ΣY Y |p(X)), is nonempty. Furthermore, we have the convergence

Tr
(
Σ̂

(n)

Y Y |p̂(n)(X)

)
→ Tr(ΣY Y |p′(X))

in probability, where p′ is a population solution in argminp∈F Tr(ΣY Y |p(X)).

The proof of Theorem 5.4 is organized in Section 3.6, where we mainly follow the lines of the original

theory but thoroughly investigate the extendability from orthogonal matrices to general projections.

It should be noted that Theorem 5.4 is independent of the SDR-related results presented in Sec-

tion 5.3.2. Thus, if there is a function p ∈ F such that PY |X = PY |p(X) or E[Y |X] = E[Y |p(X)], then

the empirical estimator (5.10) is guaranteed to converge to SDR or SDR for conditional mean, provided

that additional constraints of Theorem 5.2 or Proposition 5.3 are satisfied. Theorem 5.4 also guarantees

the unsupervised case (5.9) whenever there exists p ∈ F such that σ(X) = σ(p(X)).

5.5 Experiments

To demonstrate the usefulness of our new approach to compositional data, we apply the method

described in Section 5.3.4 to two real microbiome datasets. Here, we emphasize the visualization ability

of our method with the target domain Z = ∆2 or ∆3. Since this provides a new visualization approach

to high-dimensional compositional data, we elaborate thoroughly on the interpretability of the proposed

method with the first dataset.

For these experiments, we use a Gaussian kernel kZ(z, z
′) = exp(−∥z − z′∥2/σ2) with σ being the

median heuristic measured from the original sample before projection. Also, we fix the regularization

parameter to ε = 0.001. Note that these parameters can be fitted alternatively using cross-validation

combined with predictive models.
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The first dataset we study is skin microbiome data extensively studied by Carrieri et al. [16]. Here,

leg skin microbiome samples are obtained from 62 Canadian women to study their association with

menopausal status: 44 women in post-menopausal and 18 women in pre-menopausal. The abundances

of microbial taxa are measured by 16S rRNA gene sequencing and aggregated to the genus level. As a

result, the data consist of n = 62 samples and 186 dimensions with about 59% of the data being zeros.

Figure 5.2 displays a three-variable ternary plot obtained by the proposed method with Z = ∆2.

Although we significantly reduced the data dimension, as observed in the figure, our dimension reduction

estimate captures a clear, distinguishable pattern between two classes of menopausal status, except for

one sample nearest to the variable Z2. The dashed line in the figure indicates the line Z2 = Z3 on

the simplex, which seems to work roughly as a decision boundary of two classes. That is, the relative

ratio between Z2 and Z3 discriminates two classes, whereas Z1 plays no role in such a discrimination.

Note that the principal coordinate analysis plot using the Bray-Curtis dissimilarity, a popular measure

of dissimilarity in the microbiome literature, fails to exhibit a distinguishable pattern on this dataset

(see Supplementary Figure 5 of Carrieri et al. [16]).

Figure 5.3: Visualization of the estimated columns of the matrix P̂ with their indices. Only five columns

are not on the boundary, and the majority of points are located near the vertices.

To reinforce our analysis, we delve deeper into the estimated dimension reduction matrix P̂ . As

delineated in Section 5.2.2, the columns of P̂ represent how the original variables Xj are distributed to

the target variables Zk. In our result, 125 out of the 186 columns converged to binary vectors, meaning

that these 125 (about 67% of the total) taxa are strictly allocated to one of the variables Zk. That is,

we may interpret these taxa as strictly amalgamated: 14 taxa are allocated to Z1, 63 taxa are allocated

to Z2, and 48 taxa are allocated to Z3. With a little relaxation, we observe that 158 columns of P̂ have

a value greater than 0.7, indicating that about 85% of the taxa are concentrated in one of the Zk. We

visualize the columns of P̂ with their indices in Figure 5.3. From this figure, we further observe that

only five taxa are located in the interior of the simplex ∆2. The boundary points indicate that they are

dissimilar to the aggregated taxa into the variable Zk on the opposite side. Also, since the relative ratio

between Z2 and Z3 plays a discriminating role between two classes, we may interpret that the taxa near

the center of the line segment Z2Z3 do not distinguish those classes but are dissimilar to those near Z1.

Finally, the taxa lying on the segment Z3Z1 present weak similarity to the discriminant direction of Z3,
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Figure 5.4: Ternary plots displaying the dimension reduction result for the HMP data by the proposed

method. The left plot displays the projected data through the estimated dimension reduction matrix,

and the right plot displays the columns of the estimated matrix.

whereas they are dissimilar to Z2. A similar interpretation is possible for the taxa on the segment Z1Z2.

We then compare our method to another SDR approach to compositional data proposed by Tomassi

et al. [117], a likelihood-based inverse regression based on the fixed-length Poisson graphical model

(SDR-FPGM). This method does not require zero replacements as ours, whereas it directly applies to

the microbiome count data and seeks orthogonal projections for the unnormalized count variables. We

take the same microbiome data they used; the original data was taken from the Human Microbiome

Project (HMP) [49]. The data were processed by deleting species with mostly zeros as many as possible,

resulting in d = 27 taxa with n = 681 samples. The processed HMP data have five categories of body

site: nasal, saliva, skin, stool, and vagina.

We first display the ternary plot of the dimension reduction result of our method in Figure 5.4

with visualization for the columns of the estimated matrix. Here, 18 taxa are strictly aggregated into

the variables Zk: two taxa at Z1, eight taxa at Z2, and eight taxa at Z3. The variable Z1, where two

original taxa are amalgamated, discriminates the class vagina because the corresponding samples are

predominantly located near Z1. Interestingly, we observe that the relative ratio between Z2 and Z3 also

distinguishes the remaining four classes. We draw linear decision boundaries for these four classes via

dashed lines on the left hand side of Figure 5.5, which makes our observation more apparent. Note that

the relative ratio Z2 : Z3 is constant on each dashed line. Therefore, we may regard the segment Z2Z3

as a discriminant direction for these four classes.

Figure 5.5 compares the proposed method to the SDR-FPGM approach of Tomassi et al. [117] via

two-dimensional plots. The SDR-FPGM method provides an orthogonal projection of the original count

variables, displayed in the right panel. As discussed above, our ternary plot provides clear interpretations

through how the original variables are aggregated into the dimension-reduced variables Zk. Furthermore,

our method naturally offers insights into interactions between the dimension-reduced variables Zk since

the result is compositional data again. In contrast, each axis of the SDR-FPGM plot consists of a

cumbersome linear combination with both positive and negative coefficients. Nonetheless, one may

interpret every single axis solely based on such a linear combination, but it is quite unclear to understand

the interactions between two axes simultaneously, even though they are theoretically orthogonal in
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Figure 5.5: Comparison of our method and the SDR-FPGM method of Tomassi et al. [117]. Linear

desicion boundaries between the classes except for the class vagina is plotted on the left image. On the

right panel, we observe similar class separations, but the SDR axes do not provide any clear and intuitive

interpretations.

Euclidean space.

To summarize, our proposed method of compositional dimension reduction provides a new visual-

ization for high-dimensional compositional data with surprisingly clear interpretations similar to amal-

gamation. Furthermore, as the dimension reduction result is compositional again, the resulting variables

are interpreted relatively : we naturally gain insights into the interactions between resulting variables of

dimension reduction, which is unclear in ordinary linear SDR methods.

5.6 Discussions

This chapter proposes a new dimension reduction framework of compositional data, whose result is

also compositional and interpreted similarly to the amalgamation. We also generalize the KDR method

to achieve the proposed compositional dimension reduction within the SDR framework. The SDR rela-

tion combined with our new framework provides a compelling interpretation: aggregation of variables

based on their functional similarity. After such an aggregation into lower dimensional compositional

coordinates via the proposed method, the result enables a thorough graphical exploration using ternary

plots, which naturally exhibit relative information between projected variables. We believe this will

provide an attractive option to practitioners dealing with compositional data.

Similarly to the original KDR work of Fukumizu et al. [34], our generalization of the KDR approach

also does not infer the target dimension of dimension reduction. Also, developing a distributional theory

for the trace objective is still an open problem. On the other hand, we emphasize that our KDR-

based approach should not be the only option for achieving our new compositional dimension reduction

framework. The attractive experimental results in Section 5.5 encourage the development of various

statistical approaches building on our amalgamation-based framework. We leave this direction as a

future work.

While our approach in this chapter provides a reasonable dimension reduction, it does not produce

prediction functions like other SDR approaches. If one wants to have predictions, we recommend applying
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KRR or support vector machines after the dimension reduction of compositional data. The analogy to

KRR pointed out in (5.11) suggests we will only need a little parameter tuning for the attached predictive

models. However, this intuition needs a justification, and we leave this also as a future work.
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Chapter 6. Future Directions

In this chapter, we leave several questions for future research directions. As we proposed new

methodological frameworks for compositional data in Chapters 2 and 5, it would be desirable to make

further developments based on these frameworks for compositional data analysis.

In Chapter 2, we first approached compositional data using kernel methods to adequately deal

with increasingly available high-dimensional, sparse datasets in practice. Here, we suggested using the

radial transformation, which has been neglected for a few decades and provides a natural viewpoint

for compositional data since it does not break the original proportional interpretation. We proposed to

apply kernel methods after radial transformation, which does not replace zeros so that they do not distort

the original data. However, this approach suffers from the curse of dimensionality, a problem further

exacerbated in overdispersed datasets such as microbiome data. Thus, based on the radial perspective,

we ask the following question:

Question 1. Can we perform a high-dimensional data analysis on the nonnegative orthant of the sphere?

Can we preserve the interpretability of the variables during the analysis?

Chapter 3 presents a generalization of the KDR method, and it is applied to variable selection in

Chapter 4 and dimension reduction in Chapter 5. Despite their large sample consistence and pleasing

empirical power, our KDR-based approaches do not provide statistical significance to those selected or

aggregated variables. It naturally leads to the following question:

Question 2. Is there a viable approach to infer the selected or aggregated variables statistically? We

may imagine a post-selection inference or a post-reduction inference for this purpose.

On the other hand, we are interested in a variety of potential applications of our generalization, not

confined to compositional data.

Question 3. Is there another data with a reasonable class F of dimension reductions to which the

generalized KDR method can be applied?

Also, to expand its potential, we need to address the following two questions on the computational

complexity and optimization guarantee:

Question 4. Can we develop a scalable algorithm for the generalized KDR method? Can it be compat-

ible with the theoretical guarantee derived in Section 3.6?

Question 5. Does the nonconvex KDR objective function have good stationary points of the gradient

descent? (see Ruan et al. [92] for the corresponding result in the variable selection case)

In Chapter 5, we proposed a new dimension reduction framework for compositional data, extending

the concept of amalgamation. Combined with the SDR framework, our proposed dimension reduction

performs similarity-based variable aggregations, where similarity means the functional similarity of pre-

dictor variables. On the other hand, other types of similarity exist, such as correlations between variables

or genetic similarity. Therefore, we can imagine the integrations of our framework with the other types

of similarity.
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Question 6. Can we develop adequate methods for compositional dimension reduction based on corre-

lations or genetic similarity?

Finally, as SDR-based approaches do not produce prediction directly, we ask for other approaches

for predictive models that can be integrated with the proposed dimension reduction framework.

Question 7. Can we develop an approach for compositional data that learns the right dimension re-

duction within our framework and produces predictions simultaneously?
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